Do you want to publish a course? Click here

Solar ultraviolet bursts

259   0   0.0 ( 0 )
 Added by Peter Young
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The term ultraviolet (UV) burst is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016-2017.



rate research

Read More

Solar ultraviolet (UV) bursts are small-scale compact brightenings in transition region images. The spectral profiles of transition region lines in these bursts are significantly enhanced and broadened, often with chromospheric absorption lines such as Ni~{sc{ii}} 1335.203 and 1393.330 {AA} superimposed. We investigate the properties of several UV bursts using a coordinated observation of the Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO), and textit{Hinode} on 2015 February 7. We have identified 12 UV bursts, and 11 of them reveal small blueshifts of the Ni~{sc{ii}} absorption lines. However, the Ni~{sc{ii}} lines in one UV burst exhibit obvious redshifts of $sim$20 km s$^{-1}$, which appear to be related to the cold plasma downflows observed in the IRIS slit-jaw images. We also examine the three-dimensional magnetic field topology using a magnetohydrostatic model, and find that some UV bursts are associated with magnetic null points or bald patches. In addition, we find that these UV bursts reveal no obvious coronal signatures from the observations of the Atmospheric Imaging Assembly (AIA) on board SDO and the EUV Imaging Spectrometer (EIS) on board textit{Hinode}.
The Sun is an active source of radio emission which is often associated with the acceleration of electrons arising from processes such as solar flares and coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous solar S bursts (where S stands for short) and storms of Type III radio bursts have been observed, that are not directly relates to flares and CMEs. Here, we expand our understanding on the spectral characteristic of these two different types of radio bursts based on observations from the Low Frequency Array (LOFAR). On 9 July 2013, over 3000 solar S bursts accompanied by over 800 Type III radio bursts were observed over a time period of ~8 hours. The characteristics of Type III radio bursts are consistent to previous studies, while S bursts show narrow bandwidths, durations and drift rates of about 1/2 the drift rate of Type III bursts. Type III bursts and solar S bursts occur in a region in the corona where plasma emission is the dominant emission mechanism as determined by data constrained density and magnetic field models.
Impulsive 30 THz continuum bursts have been recently observed in solar flares, utilizing small telescopes with a unique and relatively simple optical setup concept. The most intense burst was observed together with a GOES X2 class event on October 27, 2014, also detected at two sub-THz frequencies, RHESSI X-rays and SDO/HMI and EUV. It exhibits strikingly good correlation in time and in space with white light flare emission. It is likely that this association may prove to be very common. All three 30 THz events recently observed exhibited intense fluxes in the range of 104 solar flux units, considerably larger than those measured for the same events at microwave and sub-mm wavelengths. The 30 THz burst emission might be part of the same spectral burst component found at sub-THz frequencies. The 30 THz solar bursts open a promising new window for the study of flares at their origin
We investigate the coronal imaging capabilities of the Solar UltraViolet Imager (SUVI) on the Geostationary Operational Environmental Satellite-R series spacecraft. Nominally Sun-pointed, SUVI provides solar images in six Extreme UltraViolet (EUV) wavelengths. On-orbit data indicated that SUVI had sufficient dynamic range and sensitivity to image the corona to the largest heights above the Sun to date while simultaneously imaging the Sun. We undertook a campaign to investigate the existence of the EUV signal well beyond the nominal Sun-centered imaging area of the solar EUV imagers. We off-pointed SUVI line-of-sight by almost one imaging area around the Sun. We present the details of the campaign conducted when the solar cycle is at near the minimum and some results that affirm the EUV presence to beyond three solar radii.
UV bursts are transients in the solar atmosphere with an increased impulsive emission in the extreme UV lasting for one to several tens of minutes. They often show spectral profiles indicative of a bi-directional outflow in response to magnetic reconnection. To understand UV bursts, we study how motions of magnetic elements at the surface can drive the self-consistent formation of a current sheet resulting in plasmoid-mediated reconnection. In particular, we want to study the role of the height of the reconnection in the atmosphere. We conducted numerical experiments solving the 2D MHD equations from the solar surface to the upper atmosphere. Motivated by observations, we drove a small magnetic patch embedded in a larger system of magnetic field of opposite polarity. This configuration creates an X-type neutral point in the initial potential field. The models are characterized by the plasma-beta at the height of this X point. The driving at the surface stretches the X-point into a current sheet, where plasmoids appear, and a bi-directional jet forms. This is consistent with what is expected for UV bursts or explosive events, and we provide a self-consistent model of the formation of the reconnection region in such events. The gravitational stratification gives an explanation for why explosive events are restricted to a temperature range around a few 0.1 MK, and the presence of plasmoids in the reconnection process provides an understanding of the observed variability during the transient events on a timescale of minutes. Our numerical experiments provide a comprehensive understanding of UV bursts and explosive events, in particular of how the atmospheric response changes if the reconnection happens at different plasma-beta, that is, at different heights in the atmosphere. This analysis also gives new insight into how UV bursts might be related to the photospheric Ellerman bombs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا