Do you want to publish a course? Click here

Multiphysics simulations of collisionless plasmas

206   0   0.0 ( 0 )
 Added by Rainer Grauer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Collisionless plasmas, mostly present in astrophysical and space environments, often require a kinetic treatment as given by the Vlasov equation. Unfortunately, the six-dimensional Vlasov equation can only be solved on very small parts of the considered spatial domain. However, in some cases, e.g. magnetic reconnection, it is sufficient to solve the Vlasov equation in a localized domain and solve the remaining domain by appropriate fluid models. In this paper, we describe a hierarchical treatment of collisionless plasmas in the following way. On the finest level of description, the Vlasov equation is solved both for ions and electrons. The next courser description treats electrons with a 10-moment fluid model incorporating a simplified treatment of Landau damping. At the boundary between the electron kinetic and fluid region, the central question is how the fluid moments influence the electron distribution function. On the next coarser level of description the ions are treated by an 10-moment fluid model as well. It may turn out that in some spatial regions far away from the reconnection zone the temperature tensor in the 10-moment description is nearly isotopic. In this case it is even possible to switch to a 5-moment description. This change can be done separately for ions and electrons. To test this multiphysics approach, we apply this full physics-adaptive simulations to the Geospace Environmental Modeling (GEM) challenge of magnetic reconnection.

rate research

Read More

82 - L. Gargate 2006
A massively parallel simulation code, called textit{dHybrid}, has been developed to perform global scale studies of space plasma interactions. This code is based on an explicit hybrid model; the numerical stability and parallel scalability of the code are studied. A stabilization method for the explicit algorithm, for regions of near zero density, is proposed. Three-dimensional hybrid simulations of the interaction of the solar wind with unmagnetized artificial objects are presented, with a focus on the expansion of a plasma cloud into the solar wind, which creates a diamagnetic cavity and drives the Interplanetary Magnetic Field out of the expansion region. The dynamics of this system can provide insights into other similar scenarios, such as the interaction of the solar wind with unmagnetized planets.
A Landau fluid model for a collisionless electron-proton magnetized plasma, that accurately reproduces the dispersion relation and the Landau damping rate of all the magnetohydrodynamic waves, is presented. It is obtained by an accurate closure of the hydrodynamic hierarchy at the level of the fourth order moments, based on linear kinetic theory. It retains non-gyrotropic corrections to the pressure and heat flux tensors up to the second order in the ratio between the considered frequencies and the ion cyclotron frequency.
Collisionless shocks are common features in space and astrophysical systems where supersonic plasma flows interact, such as in the solar wind, the heliopause, and supernova remnants. Recent experimental capabilities and diagnostics allow detailed laboratory investigations of high-Mach-number shocks, which therefore can become a valuable way to understand shock dynamics in various astrophysical environments. Using 2D particle-in-cell simulations with a Coulomb binary collision operator, we demonstrate the mechanism for generation of energetic electrons and experimental requirements for detecting this process in the laboratory high-Mach-number collisionless shocks. We show through a parameter study that electron acceleration by magnetized collisionless shocks is feasible in laboratory experiments with laser-driven expanding plasmas.
The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kinetic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo methods as well as the conceptual details in the context of the sputtering scenario are elaborated on. Finally, two in the context of sputtering transport simulations often exploited assumptions, namely on the energy distribution of impinging ions as well as on the test particle approach, are validated for the proposed example discharge.
110 - Per Helander 2017
The energy budget of a collisionless plasma subject to electrostatic fluctuations is considered, and the excess of thermal energy over the minimum accessible to it under various constraints that limit the possible forms of plasma motion is calculated. This excess measures how much thermal energy is available for conversion into plasma instabilities, and therefore constitutes a nonlinear measure of plasma stability. A distribution function with zero available energy defines a ground state in the sense that its energy cannot decrease by any linear or nonlinear plasma motion. In a Vlasov plasma with small density and temperature fluctuations, the available energy is proportional to the mean square of these quantities, and exceeds the corresponding energy in ideal or resistive magnetohydrodynamics. If the first or second adiabatic invariant is conserved, ground states generally have inhomogeneous density and temperature. Magnetically confined plasmas are usually not in any ground state, but certain types of stellarator plasmas are so with respect to fluctuations that conserve both these adiabatic invariants, making the plasma linearly and nonlinearly stable to such fluctuations. Similar stability properties can also be enjoyed by plasmas confined by a dipole magnetic field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا