Do you want to publish a course? Click here

Accelerated Model Checking of Parametric Markov Chains

126   0   0.0 ( 0 )
 Added by Ernst Moritz Hahn
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Parametric Markov chains occur quite naturally in various applications: they can be used for a conservative analysis of probabilistic systems (no matter how the parameter is chosen, the system works to specification); they can be used to find optimal settings for a parameter; they can be used to visualise the influence of system parameters; and they can be used to make it easy to adjust the analysis for the case that parameters change. Unfortunately, these advancements come at a cost: parametric model checking is---or rather was---often slow. To make the analysis of parametric Markov models scale, we need three ingredients: clever algorithms, the right data structure, and good engineering. Clever algorithms are often the main (or sole) selling point; and we face the trouble that this paper focuses on -- the latter ingredients to efficient model checking. Consequently, our easiest claim to fame is in the speed-up we have often realised when comparing to the state of the art.



rate research

Read More

We revisit the symbolic verification of Markov chains with respect to finite horizon reachability properties. The prevalent approach iteratively computes step-bounded state reachability probabilities. By contrast, recent advances in probabilistic inference suggest symbolically representing all horizon-length paths through the Markov chain. We ask whether this perspective advances the state-of-the-art in probabilistic model checking. First, we formally describe both approaches in order to highlight their key differences. Then, using these insights we develop Rubicon, a tool that transpiles Prism models to the probabilistic inference tool Dice. Finally, we demonstrate better scalability compared to probabilistic model checkers on selected benchmarks. All together, our results suggest that probabilistic inference is a valuable addition to the probabilistic model checking portfolio -- with Rubicon as a first step towards integrating both perspectives.
254 - Ming Xu 2021
Fidelity is one of the most widely used quantities in quantum information that measure the distance of quantum states through a noisy channel. In this paper, we introduce a quantum analogy of computation tree logic (CTL) called QCTL, which concerns fidelity instead of probability in probabilistic CTL, over quantum Markov chains (QMCs). Noisy channels are modelled by super-operators, which are specified by QCTL formulas; the initial quantum states are modelled by density operators, which are left parametric in the given QMC. The problem is to compute the minimumfidelity over all initial states for conservation. We achieve it by a reduction to quantifier elimination in the existential theory of the reals. The method is absolutely exact, so that QCTL formulas are proven to be decidable in exponential time. Finally, we implement the proposed method and demonstrate its effectiveness via a quantum IPv4 protocol.
The analysis of parametrised systems is a growing field in verification, but the analysis of parametrised probabilistic systems is still in its infancy. This is partly because it is much harder: while there are beautiful cut-off results for non-stochastic systems that allow to focus only on small instances, there is little hope that such approaches extend to the quantitative analysis of probabilistic systems, as the probabilities depend on the size of a system. The unicorn would be an automatic transformation of a parametrised system into a formula, which allows to plot, say, the likelihood to reach a goal or the expected costs to do so, against the parameters of a system. While such analysis exists for narrow classes of systems, such as waiting queues, we aim both lower---stepwise exploring the parameter space---and higher---considering general systems. The novelty is to heavily exploit the similarity between instances of parametrised systems. When the parameter grows, the system for the smaller parameter is, broadly speaking, present in the larger system. We use this observation to guide the elegant state-elimination method for parametric Markov chains in such a way, that the model transformations will start with those parts of the system that are stable under increasing the parameter. We argue that this can lead to a very cheap iterative way to analyse parametric systems, show how this approach extends to reconfigurable systems, and demonstrate on two benchmarks that this approach scales.
141 - Anicet Bart 2017
Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs -- consistency, qualitative reachability and quantitative reachability -- that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results.
70 - Ming Xu , Jingyi Mei , Ji Guan 2021
Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialised the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by signal temporal logic (STL). To effectively check the atomic propositions in STL, we develop a state-of-art real root isolation algorithm under Schanuels conjecture; further, we check the general STL formula by interval operations with a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula by calling the real root isolation algorithm. A running example of an open quantum walk is provided to demonstrate our method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا