Do you want to publish a course? Click here

Spin accumulation at nonmagnetic interface induced by direct Rashba Edelstein effect

84   0   0.0 ( 0 )
 Added by Jorge Puebla
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rashba effect describes how electrons moving in an electric field experience a momentum dependent magnetic field that couples to the electron angular momentum (spin). This physical phenomenon permits the generation of spin polarization from charge current (Edelstein effect), which leads to the buildup of spin accumulation. Spin accumulation due to Rashba Edelstein effect has been recently reported to be uniform and oriented in plane, which has been suggested for applications as spin filter device and efficient driving force for magnetization switching. Here, we report the X-ray spectroscopy characterization Rashba interface formed between nonmagnetic metal (Cu, Ag) and oxide (Bi$_{2}$O$_{3}$) at grazing incidence angles. We further discuss the generation of spin accumulation by injection of electrical current at these Rashba interfaces, and its optical detection by time resolved magneto optical Kerr effect. We provide details of our characterization which can be extended to other Rashba type systems beyond those reported here.



rate research

Read More

We have studied spin-orbit (SO) field in Ni$_{80}$Fe$_{20}$(Py)/W/Pt trilayer by means of spin-torque ferromagnetic resonance, and demonstrated that the W/Pt interface generates an extra SO field acting on the Py layer. This unprecedented field originates from the following three processes, 1) spin accumulation at W/Pt interface via the Rashba-Edelstein effect, 2) diffusive spin transport in the W layer, and 3) spin absorption into the Py layer through accumulation at the Py/W interface. Our result means that we can create extra SO field away from the ferromagnet/ metal interface and control its strength by a combination of two different metals.
Nuclear spin polarization induced by hyperfine interaction and the Edelstein effect due to strong spin-orbit interaction is investigated by quantum transport in Bi(111) thin film samples. The Bi(111) films are deposited on mica by van der Waals epitaxial growth. The Bi(111) films show micrometer-sized triangular islands with 0.39 nm step height, corresponding to the Bi(111) bilayer height. At low temperatures a high current density is applied to generate a non-equilibrium carrier spin polarization by the Edelstein effect at the Bi(111) surface, which then induces dynamic nuclear polarization by hyperfine interaction. Comparative quantum magnetotransport antilocalization measurements indicate a suppression of antilocalization by the in-plane Overhauser field from the nuclear polarization and allow a quantification of the Overhauser field. Hence nuclear polarization was both achieved and quantified by a purely electronic transport-based approach.
We examine the bound-state and free-state contributions to the density of states in a three-dimensional electron gas with a two-dimensional interface with Rashba spin-orbit coupling. Confinement of electrons to the interface is achieved through the inclusion of an attractive potential in the interface. Motivation for our research comes from interest in heterostructure materials that exhibit the Edelstein and inverse Edelstein effects on surfaces or interfaces due to large Rashba spin-orbit coupling. By modifying the Hamiltonian of a three-dimensional free electron gas to include an interface with Rashba spin-orbit coupling and an attractive potential, we are able to calculate the bound-state and free-state wavefunctions and corresponding density of states analytically. We find that one of the spin-split energy bands in the interface has an upper bound, resulting in an enhancement of the Edelstein and inverse Edelstein effect.
The electronic and optoelectronic properties of two dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS$_2$ or WSe$_2$)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
It is well known that a current driven through a two-dimensional electron gas with Rashba spin-orbit coupling induces a spin polarization in the perpendicular direction (Edelstein effect). This phenomenon has been extensively studied in the linear response regime, i.e., when the average drift velocity of the electrons is a small fraction of the Fermi velocity. Here we investigate the phenomenon in the nonlinear regime, meaning that the average drift velocity is comparable to, or exceeds the Fermi velocity. This regime is realized when the electric field is very large, or when electron-impurity scattering is very weak. The quantum kinetic equation for the density matrix of noninteracting electrons is exactly and analytically solvable, reducing to a problem of spin dynamics for unpaired electrons near the Fermi surface. The crucial parameter is $gamma=eEL_s/E_F$, where $E$ is the electric field, $e$ is the absolute value of the electron charge, $E_F$ is the Fermi energy, and $L_s = hbar/(2malpha)$ is the spin-precession length in the Rashba spin-orbit field with coupling strength $alpha$. If $gammall1$ the evolution of the spin is adiabatic, resulting in a spin polarization that grows monotonically in time and eventually saturates at the maximum value $n(alpha/v_F)$, where $n$ is the electron density and $v_F$ is the Fermi velocity. If $gamma gg 1$ the evolution of the spin becomes strongly non-adiabatic and the spin polarization is progressively reduced, and eventually suppressed for $gammato infty$. We also predict an inverse nonlinear Edelstein effect, in which an electric current is driven by a magnetic field that grows linearly in time. The conductivities for the direct and the inverse effect satisfy generalized Onsager reciprocity relations, which reduce to the standard ones in the linear response regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا