Do you want to publish a course? Click here

Did the Model Understand the Question?

110   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We analyze state-of-the-art deep learning models for three tasks: question answering on (1) images, (2) tables, and (3) passages of text. Using the notion of emph{attribution} (word importance), we find that these deep networks often ignore important question terms. Leveraging such behavior, we perturb questions to craft a variety of adversarial examples. Our strongest attacks drop the accuracy of a visual question answering model from $61.1%$ to $19%$, and that of a tabular question answering model from $33.5%$ to $3.3%$. Additionally, we show how attributions can strengthen attacks proposed by Jia and Liang (2017) on paragraph comprehension models. Our results demonstrate that attributions can augment standard measures of accuracy and empower investigation of model performance. When a model is accurate but for the wrong reasons, attributions can surface erroneous logic in the model that indicates inadequacies in the test data.



rate research

Read More

Tracking entities throughout a procedure described in a text is challenging due to the dynamic nature of the world described in the process. Firstly, we propose to formulate this task as a question answering problem. This enables us to use pre-trained transformer-based language models on other QA benchmarks by adapting those to the procedural text understanding. Secondly, since the transformer-based language models cannot encode the flow of events by themselves, we propose a Time-Stamped Language Model~(TSLM model) to encode event information in LMs architecture by introducing the timestamp encoding. Our model evaluated on the Propara dataset shows improvements on the published state-of-the-art results with a $3.1%$ increase in F1 score. Moreover, our model yields better results on the location prediction task on the NPN-Cooking dataset. This result indicates that our approach is effective for procedural text understanding in general.
Neural models have achieved significant results on the text-to-SQL task, in which most current work assumes all the input questions are legal and generates a SQL query for any input. However, in the real scenario, users can input any text that may not be able to be answered by a SQL query. In this work, we propose TriageSQL, the first cross-domain text-to-SQL question intention classification benchmark that requires models to distinguish four types of unanswerable questions from answerable questions. The baseline RoBERTa model achieves a 60% F1 score on the test set, demonstrating the need for further improvement on this task. Our dataset is available at https://github.com/chatc/TriageSQL.
147 - Yiwei Chen , Yu Pan , Daoyi Dong 2020
Quantum Language Models (QLMs) in which words are modelled as quantum superposition of sememes have demonstrated a high level of model transparency and good post-hoc interpretability. Nevertheless, in the current literature word sequences are basically modelled as a classical mixture of word states, which cannot fully exploit the potential of a quantum probabilistic description. A full quantum model is yet to be developed to explicitly capture the non-classical correlations within the word sequences. We propose a neural network model with a novel Entanglement Embedding (EE) module, whose function is to transform the word sequences into entangled pure states of many-body quantum systems. Strong quantum entanglement, which is the central concept of quantum information and an indication of parallelized correlations among the words, is observed within the word sequences. Numerical experiments show that the proposed QLM with EE (QLM-EE) achieves superior performance compared with the classical deep neural network models and other QLMs on Question Answering (QA) datasets. In addition, the post-hoc interpretability of the model can be improved by quantizing the degree of entanglement among the words.
A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce StrategyQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of $sim$66%.
Generating some appealing questions in open-domain conversations is an effective way to improve human-machine interactions and lead the topic to a broader or deeper direction. To avoid dull or deviated questions, some researchers tried to utilize answer, the future information, to guide question generation. However, they separate a post-question-answer (PQA) triple into two parts: post-question (PQ) and question-answer (QA) pairs, which may hurt the overall coherence. Besides, the QA relationship is modeled as a one-to-one mapping that is not reasonable in open-domain conversations. To tackle these problems, we propose a generative triple-wise model with hierarchical variations for open-domain conversational question generation (CQG). Latent variables in three hierarchies are used to represent the shared background of a triple and one-to-many semantic mappings in both PQ and QA pairs. Experimental results on a large-scale CQG dataset show that our method significantly improves the quality of questions in terms of fluency, coherence and diversity over competitive baselines.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا