Universal nonlinear stage of the locally induced modulational instability in fiber optics


Abstract in English

We report an optical fiber experiment in which we study nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as experimental platform, we show that the initial perturbation evolves into expanding nonlinear oscillatory structure exhibiting some universal characteristics that agree with theoretical predictions based on integrability properties of the focusing nonlinear Schrodinger equation. Our experimental results demonstrate persistence of the universal evolution scenario, even in the presence of small dissipation and noise in an experimental system that is not rigorously of an integrable nature.

Download