Do you want to publish a course? Click here

The late type eclipsing binaries in the Large Magellanic Cloud: catalogue of fundamental physical parameters

84   0   0.0 ( 0 )
 Added by Dariusz Graczyk
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a determination of precise fundamental physical parameters of twenty detached, double- lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems, the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalogue results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria project). The V-band brightnesses of the systems range from 15.4 mag to 17.7 mag and their orbital periods range from 49 days to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3% and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M_sun and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show some weak age-metallicity relation. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or a hierarchical binary merger scenario in the case of ECL-05430. The longest period system OGLE LMC SC9 230659 shows a surprising apsidal motion which shifts the apparent position of the eclipses. In one spectrum of OGLE LMC-ECL-12669 we noted a peculiar dimming of one of the components by 65% well outside of the eclipses. We interpret this observation as arising from an extremely rare occultation event as a foreground Galactic object covers only one component of an extragalactic eclipsing binary.



rate research

Read More

We present a distance determination to the Small Magellanic Cloud (SMC) based on an analysis of four detached, long period, late type eclipsing binaries discovered by the OGLE Survey. The components of the binaries show negligible intrinsic variability. A consistent set of stellar parameters was derived with low statistical and systematic uncertainty. The absolute dimensions of the stars are calculated with a precision of better than 3%. The surface brightness - infrared color relation was used to derive the distance to each binary. The four systems clump around a distance modulus of (m - M)=18.99 with a dispersion of only 0.05 mag. Combining these results with the distance published by Graczyk et al. for the eclipsing binary OGLE SMC113.3 4007 we obtain a mean distance modulus to the SMC of 18.965 +/- 0.025 (stat.) +/- 0.048 (syst.) mag. This corresponds to a distance of 62.1 +/- 1.9 kpc, where the error includes both uncertainties. Taking into account other recent published determinations of the SMC distance we calculated the distance modulus difference between the SMC and the LMC equal to 0.458 +/- 0.068 mag. Finally we advocate mu_{SMC}=18.95 +/- 0.07 as a new canonical value of the distance modulus to this galaxy.
We present the physical parameters of 2335 late-type contact binary (CB) systems extracted from the Catalina Sky Survey (CSS). Our sample was selected from the CSS Data Release 1 by strictly limiting the prevailing temperature uncertainties and light-curve fitting residuals, allowing us to almost eliminate any possible contaminants. We developed an automatic Wilson--Devinney-type code to derive the relative properties of CBs based on their light-curve morphology. By adopting the distances derived from CB (orbital) period--luminosity relations (PLRs), combined with the well-defined mass--luminosity relation for the systems primary stars and assuming solar metallicity, we calculated the objects masses, radii, and luminosities. Our sample of fully eclipsing CBs contains 1530 W-, 710 A-, and 95 B-type CBs. A comparison with literature data and with the results from different surveys confirms the accuracy and coherence of our measurements. The period distributions of the various CB subtypes are different, hinting at a possible evolutionary sequence. W-type CBs are clearly located in a strip in the total mass versus mass ratio plane, while A-type CBs may exhibit a slightly different dependence. There are no significant differences among the PLRs of A- and W-type CBs, but the PLR zero points are affected by their mass ratios and fill-out factors. Determination of zero-point differences for different types of CBs may help us improve the accuracy of the resulting PLRs. We demonstrate that automated approaches to deriving CB properties could be a powerful tool for application to the much larger CB samples expected to result from future surveys.
We present the results of a spectroscopic campaign on eclipsing binaries with long orbital period (P = 20 - 75 d) carried out with the CHIRON spectrograph. Physical and orbital solutions for seven systems were derived from the V-band, and I-band ASAS, WASP, and TESS photometry, while radial velocities were calculated from high quality optical spectra using a two-dimensional cross-correlation technique. The atmospheric parameters of the stars have been determined from the separated spectra. Most of our targets are composed of evolved stars (sub-giants or red giants) but two systems show components in different phases of evolution and one possible merger. For four binaries the masses and radii of the components were obtained with precision better than 3%. These objects provide very valuable information on stellar evolution.
379 - S.-B. Qian , J.-J. He , J. Zhang 2017
Numerous EWs were discovered by several deep photometric survey and there are about 40785 EW-type binary systems listed in the international variable star index (VSX) by March 13, 2017. 7938 of them were observed by LAMOST by November 30, 2016 and their spectral types were given. Stellar atmospheric parameters of 5363 EW-type binary stars were determined based on good spectroscopic observations. In the paper, those EWs were catalogued and their properties are analyzed. The distributions of the orbital period (P), the effect temperature (T), the gravitational acceleration (Log(g)), the metallicity ([Fe/H]) and the radial velocity (RV) are presented for those observed EW-type systems. It is shown that about 80.6% sample stars have metallicity below zero indicating that EW-type systems are old stellar population. This is in agreement with the the conclusion that the EW binaries are formed from moderately close binaries through angular momentum loss via magnetic braking that takes a few hundred million to a few billion years. The unusual high metallicities of a few percent of EWs may be caused by contaminating of material from the evolution of unseen neutron stars and black holes in the systems. The correlations between the orbital period and the effect temperature, the gravitational acceleration and the metallicity are presented and their scatters are mainly caused by (i) the presence of the third bodies and (ii) the wrong determined periods sometimes. It is shown that some EW contain evolved component stars and the physical properties of EWs are mainly depending on their orbital periods. It is found that the extremely short-period EWs may be older than their long-period cousins because they have lower metallicities. This reveals that they have a longer timescale of pre-contact evolution and their formation and evolution are mainly driven by angular momentum loss via magnetic braking.
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud. The system consists of two late G-type giant stars on an eccentric orbit and orbital period of ~200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson Devinney code. We derived orbital and physical parameters of the binary with a high precision of < 1 %. The masses and surface metallicities of the components are virtually the same and equal to 2.23 +/- 0.02 M_sun and [Fe/H] = -0.63 +/- 0.10 dex. However their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M) = 18.452 +/- 0.023 (statistical) +/- 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter we applied a geometrical correction for its position in the LMC disc using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is d_LMC = 50.30 +/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzynski et al.(2013).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا