Tree tensor network descriptions of critical quantum spin chains are empirically known to reproduce correlation functions matching CFT predictions in the continuum limit. It is natural to seek a more complete correspondence, additionally incorporating dynamics. On the CFT side, this is determined by a representation of the diffeomorphism group of the circle. In a remarkable series of papers, Jones outlined a research program where the Thompson group T takes the role of the latter in the discrete setting, and representations of T are constructed from certain elements of a subfactor planar algebra. He also showed that for a particular example of such a construction, this approach only yields - in the continuum limit - a representation which is highly discontinuous and hence unphysical. Here we show that the same issue arises generically when considering tree tensor networks: the set of coarse-graining maps yielding discontinuous representations has full measure in the set of all isometries. This extends Jones no-go example to typical elements of the so-called tensor planar algebra. We also identify an easily verified necessary condition for a continuous limit to exist. This singles out a particular class of tree tensor networks. Our considerations apply to recent approaches for introducing dynamics in holographic codes.