Do you want to publish a course? Click here

Boosting up Scene Text Detectors with Guided CNN

124   0   0.0 ( 0 )
 Added by Pan He
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep CNNs have achieved great success in text detection. Most of existing methods attempt to improve accuracy with sophisticated network design, while paying less attention on speed. In this paper, we propose a general framework for text detection called Guided CNN to achieve the two goals simultaneously. The proposed model consists of one guidance subnetwork, where a guidance mask is learned from the input image itself, and one primary text detector, where every convolution and non-linear operation are conducted only in the guidance mask. On the one hand, the guidance subnetwork filters out non-text regions coarsely, greatly reduces the computation complexity. On the other hand, the primary text detector focuses on distinguishing between text and hard non-text regions and regressing text bounding boxes, achieves a better detection accuracy. A training strategy, called background-aware block-wise random synthesis, is proposed to further boost up the performance. We demonstrate that the proposed Guided CNN is not only effective but also efficient with two state-of-the-art methods, CTPN and EAST, as backbones. On the challenging benchmark ICDAR 2013, it speeds up CTPN by 2.9 times on average, while improving the F-measure by 1.5%. On ICDAR 2015, it speeds up EAST by 2.0 times while improving the F-measure by 1.0%.



rate research

Read More

Many tasks are related to determining if a particular text string exists in an image. In this work, we propose a new framework that learns this task in an end-to-end way. The framework takes an image and a text string as input and then outputs the probability of the text string being present in the image. This is the first end-to-end framework that learns such relationships between text and images in scene text area. The framework does not require explicit scene text detection or recognition and thus no bounding box annotations are needed for it. It is also the first work in scene text area that tackles suh a weakly labeled problem. Based on this framework, we developed a model called Guided Attention. Our designed model achieves much better results than several state-of-the-art scene text reading based solutions for a challenging Street View Business Matching task. The task tries to find correct business names for storefront images and the dataset we collected for it is substantially larger, and more challenging than existing scene text dataset. This new real-world task provides a new perspective for studying scene text related problems. We also demonstrate the uniqueness of our task via a comparison between our problem and a typical Visual Question Answering problem.
Scene text detection task has attracted considerable attention in computer vision because of its wide application. In recent years, many researchers have introduced methods of semantic segmentation into the task of scene text detection, and achieved promising results. This paper proposes a detector framework based on the conditional generative adversarial networks to improve the segmentation effect of scene text detection, called DGST (Discriminator Guided Scene Text detector). Instead of binary text score maps generated by some existing semantic segmentation based methods, we generate a multi-scale soft text score map with more information to represent the text position more reasonably, and solve the problem of text pixel adhesion in the process of text extraction. Experiments on standard datasets demonstrate that the proposed DGST brings noticeable gain and outperforms state-of-the-art methods. Specifically, it achieves an F-measure of 87% on ICDAR 2015 dataset.
As an important task in multimodal context understanding, Text-VQA (Visual Question Answering) aims at question answering through reading text information in images. It differentiates from the original VQA task as Text-VQA requires large amounts of scene-text relationship understanding, in addition to the cross-modal grounding capability. In this paper, we propose Localize, Group, and Select (LOGOS), a novel model which attempts to tackle this problem from multiple aspects. LOGOS leverages two grounding tasks to better localize the key information of the image, utilizes scene text clustering to group individual OCR tokens, and learns to select the best answer from different sources of OCR (Optical Character Recognition) texts. Experiments show that LOGOS outperforms previous state-of-the-art methods on two Text-VQA benchmarks without using additional OCR annotation data. Ablation studies and analysis demonstrate the capability of LOGOS to bridge different modalities and better understand scene text.
Many previous methods have demonstrated the importance of considering semantically relevant objects for carrying out video-based human activity recognition, yet none of the methods have harvested the power of large text corpora to relate the objects and the activities to be transferred into learning a unified deep convolutional neural network. We present a novel activity recognition CNN which co-learns the object recognition task in an end-to-end multitask learning scheme to improve upon the baseline activity recognition performance. We further improve upon the multitask learning approach by exploiting a text-guided semantic space to select the most relevant objects with respect to the target activities. To the best of our knowledge, we are the first to investigate this approach.
Recently end-to-end scene text spotting has become a popular research topic due to its advantages of global optimization and high maintainability in real applications. Most methods attempt to develop various region of interest (RoI) operations to concatenate the detection part and the sequence recognition part into a two-stage text spotting framework. However, in such framework, the recognition part is highly sensitive to the detected results (emph{e.g.}, the compactness of text contours). To address this problem, in this paper, we propose a novel Mask AttentioN Guided One-stage text spotting framework named MANGO, in which character sequences can be directly recognized without RoI operation. Concretely, a position-aware mask attention module is developed to generate attention weights on each text instance and its characters. It allows different text instances in an image to be allocated on different feature map channels which are further grouped as a batch of instance features. Finally, a lightweight sequence decoder is applied to generate the character sequences. It is worth noting that MANGO inherently adapts to arbitrary-shaped text spotting and can be trained end-to-end with only coarse position information (emph{e.g.}, rectangular bounding box) and text annotations. Experimental results show that the proposed method achieves competitive and even new state-of-the-art performance on both regular and irregular text spotting benchmarks, i.e., ICDAR 2013, ICDAR 2015, Total-Text, and SCUT-CTW1500.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا