No Arabic abstract
We report on a novel phenomenon of the resonance effect of primordial density perturbations arisen from a sound speed parameter with an oscillatory behavior, which can generically lead to the formation of primordial black holes in the early Universe. For a general inflaton field, it can seed primordial density fluctuations and their propagation is governed by a parameter of sound speed square. Once if this parameter achieves an oscillatory feature for a while during inflation, a significant non-perturbative resonance effect on the inflaton field fluctuations takes place around a critical length scale, which results in significant peaks in the primordial power spectrum. By virtue of this robust mechanism, primordial black holes with specific mass function can be produced with a sufficient abundance for dark matter in sizable parameter ranges.
As potential candidates of dark matter, primordial black holes (PBHs) are within the core scopes of various astronomical observations. In light of the explosive development of gravitational wave (GW) and radio astronomy, we thoroughly analyze a stochastic background of cosmological GWs, induced by over large primordial density perturbations, with several spikes that was inspired by the sound speed resonance effect and can predict a particular pattern on the mass spectrum of PBHs. With a specific mechanicsm for PBHs formation, we for the first time perform the study of such induced GWs that originate from both the inflationary era and the radiation-dominated phase. We report that, besides the traditional process of generating GWs during the radiation-dominated phase, the contribution of the induced GWs in the sub-Hubble regime during inflation can become significant at critical frequency band because of a narrow resonance effect. All contributions sum together to yield a specific profile of the energy spectrum of GWs that can be of observable interest in forthcoming astronomical experiments. Our study shed light on the possible joint probe of PBHs via various observational windows of multi-messenger astronomy, including the search for electromagnetic effects with astronomical telescopes and the stochastic background of relic GWs with GW instruments.
We present a new realization of the resonant production of primordial black holes as well as gravitational waves in a two-stage inflation model consisting of a scalar field phi with an axion-monodromy-like periodic structure in the potential that governs the first stage and another field chi with a hilltop-like potential that dominates the second stage. The parametric resonance seeded by the periodic structure at the first stage amplifies the perturbations of both fields inside the Hubble radius. While the evolution of the background trajectory experiences a turn as the oscillatory barrier height increases, the amplified perturbations of chi remain as they are and contribute to the final curvature perturbation. It turns out that the primordial power spectrum displays a significant resonant peak on small scales, which can lead to an abundant production of primordial black holes. Furthermore, gravitational waves are also generated from the resonantly enhanced field perturbations during inflation, the amplitude of which may be constrained by future gravitational wave interferometers.
Primordial black holes as dark matter may be generated in single-field models of inflation thanks to the enhancement at small scales of the comoving curvature perturbation. This mechanism requires leaving the slow-roll phase to enter a non-attractor phase during which the inflaton travels across a plateau and its velocity drops down exponentially. We argue that quantum diffusion has a significant impact on the primordial black hole mass fraction making the classical standard prediction not trustable.
It has been shown that black holes would have formed in the early Universe if, on any given scale, the spectral amplitude of the Cosmic Microwave Background (CMB) exceeds 10^(-4). This value is within the bounds allowed by astrophysical phenomena for the small scale spectrum of the CMB, corresponding to scales which exit the horizon at the end of slow-roll inflation. Previous work by Kohri et. al. (2007) showed that for black holes to form from a single field model of inflation, the slope of the potential at the end of inflation must be flatter than it was at horizon exit. In this work we show that a phenomenological Hilltop model of inflation, satisfying the Kohri et. al. criteria, could lead to the production of black holes, if the power of the inflaton self-interaction is less than or equal to 3, with a reasonable number or e-folds. We extend our analysis to the running mass model, and confirm that this model results in the production of black holes, and by using the latest WMAP year 5 bounds on the running of the spectral index, and the black hole constraint we update the results of Leach et. al. (2000) excluding more of parameter space.
In this work we study the imprints of a primordial cosmic string on inflationary power spectrum. Cosmic string induces two distinct contributions on curvature perturbations power spectrum. The first type of correction respects the translation invariance while violating isotropy. This generates quadrupolar statistical anisotropy in CMB maps which is constrained by the Planck data. The second contribution breaks both homogeneity and isotropy, generating a dipolar power asymmetry in variance of temperature fluctuations with its amplitude falling on small scales. We show that the strongest constraint on the tension of string is obtained from the quadrupolar anisotropy and argue that the mass scale of underlying theory responsible for the formation of string can not be much higher than the GUT scale. The predictions of string for the diagonal and off-diagonal components of CMB angular power spectrum are presented.