No Arabic abstract
Unsupervised machine translation---i.e., not assuming any cross-lingual supervision signal, whether a dictionary, translations, or comparable corpora---seems impossible, but nevertheless, Lample et al. (2018) recently proposed a fully unsupervised machine translation (MT) model. The model relies heavily on an adversarial, unsupervised alignment of word embedding spaces for bilingual dictionary induction (Conneau et al., 2018), which we examine here. Our results identify the limitations of current unsupervised MT: unsupervised bilingual dictionary induction performs much worse on morphologically rich languages that are not dependent marking, when monolingual corpora from different domains or different embedding algorithms are used. We show that a simple trick, exploiting a weak supervision signal from identical words, enables more robust induction, and establish a near-perfect correlation between unsupervised bilingual dictionary induction performance and a previously unexplored graph similarity metric.
Unsupervised Bilingual Dictionary Induction methods based on the initialization and the self-learning have achieved great success in similar language pairs, e.g., English-Spanish. But they still fail and have an accuracy of 0% in many distant language pairs, e.g., English-Japanese. In this work, we show that this failure results from the gap between the actual initialization performance and the minimum initialization performance for the self-learning to succeed. We propose Iterative Dimension Reduction to bridge this gap. Our experiments show that this simple method does not hamper the performance of similar language pairs and achieves an accuracy of 13.64~55.53% between English and four distant languages, i.e., Chinese, Japanese, Vietnamese and Thai.
Great progress has been made in unsupervised bilingual lexicon induction (UBLI) by aligning the source and target word embeddings independently trained on monolingual corpora. The common assumption of most UBLI models is that the embedding spaces of two languages are approximately isomorphic. Therefore the performance is bound by the degree of isomorphism, especially on etymologically and typologically distant languages. To address this problem, we propose a transformation-based method to increase the isomorphism. Embeddings of two languages are made to match with each other by rotating and scaling. The method does not require any form of supervision and can be applied to any language pair. On a benchmark data set of bilingual lexicon induction, our approach can achieve competitive or superior performance compared to state-of-the-art methods, with particularly strong results being found on distant languages.
Bilingual lexicons map words in one language to their translations in another, and are typically induced by learning linear projections to align monolingual word embedding spaces. In this paper, we show it is possible to produce much higher quality lexicons with methods that combine (1) unsupervised bitext mining and (2) unsupervised word alignment. Directly applying a pipeline that uses recent algorithms for both subproblems significantly improves induced lexicon quality and further gains are possible by learning to filter the resulting lexical entries, with both unsupervised and semi-supervised schemes. Our final model outperforms the state of the art on the BUCC 2020 shared task by 14 $F_1$ points averaged over 12 language pairs, while also providing a more interpretable approach that allows for rich reasoning of word meaning in context. Further analysis of our output and the standard reference lexicons suggests they are of comparable quality, and new benchmarks may be needed to measure further progress on this task.
Most of the successful and predominant methods for bilingual lexicon induction (BLI) are mapping-based, where a linear mapping function is learned with the assumption that the word embedding spaces of different languages exhibit similar geometric structures (i.e., approximately isomorphic). However, several recent studies have criticized this simplified assumption showing that it does not hold in general even for closely related languages. In this work, we propose a novel semi-supervised method to learn cross-lingual word embeddings for BLI. Our model is independent of the isomorphic assumption and uses nonlinear mapping in the latent space of two independently trained auto-encoders. Through extensive experiments on fifteen (15) different language pairs (in both directions) comprising resource-rich and low-resource languages from two different datasets, we demonstrate that our method outperforms existing models by a good margin. Ablation studies show the importance of different model components and the necessity of non-linear mapping.
Recent studies have demonstrated a perceivable improvement on the performance of neural machine translation by applying cross-lingual language model pretraining (Lample and Conneau, 2019), especially the Translation Language Modeling (TLM). To alleviate the need for expensive parallel corpora by TLM, in this work, we incorporate the translation information from dictionaries into the pretraining process and propose a novel Bilingual Dictionary-based Language Model (BDLM). We evaluate our BDLM in Chinese, English, and Romanian. For Chinese-English, we obtained a 55.0 BLEU on WMT-News19 (Tiedemann, 2012) and a 24.3 BLEU on WMT20 news-commentary, outperforming the Vanilla Transformer (Vaswani et al., 2017) by more than 8.4 BLEU and 2.3 BLEU, respectively. According to our results, the BDLM also has advantages on convergence speed and predicting rare words. The increase in BLEU for WMT16 Romanian-English also shows its effectiveness in low-resources language translation.