Nuclear structure in Parity Doublet Model


Abstract in English

Using an extended parity doublet model with the hidden local symmetry, we study the properties of nuclei in the mean field approximation to see if the parity doublet model could reproduce nuclear properties and also to estimate the value of the chiral invariant nucleon mass $m_0$ preferred by nuclear structure. We first determined our model parameters using the inputs from free space and from nuclear matter properties. Then, we study some basic nuclear properties such as the nuclear binding energy with several different choices of the chiral invariant mass. We observe that our results, especially the nuclear binding energy, approach the experimental values as $m_0$ is increased until $m_0=700$ MeV and start to deviate more from the experiments afterwards with $m_0$ larger than $m_0=700$ MeV, which may imply that $m_0=700$ MeV is preferred by some nuclear properties.

Download