Do you want to publish a course? Click here

Leaked GeV CRs from a broken shell: Explaining 9 years Fermi-LAT data of SNR W28

54   0   0.0 ( 0 )
 Added by Yudong Cui
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supernova remnant (SNR),W28 is well known for its classic hadronic scenario, in which the TeV cosmic rays (CRs) released at the early stage of this mid-aged SNR are illuminating nearby molecular clouds (MCs). Overwhelming evidences have shown that the northeast of the SNR (W28-North) has already encountered with the MC clumps. Through this broken shell -- W28-North, we believe the CRs with energy down to $<$1,GeV to be able to be injected into nearby MCs. To further testify this hadronic scenario, we first analyse the 9 years Fermi-LAT data in/around W28 with energy down to 0.3,GeV. Our Fermi-LAT analysis display a 10-200 GeV skymap which spatially matches well with the known TeV sources -- HESS,J1801-233 (W28-North), HESS,J1800-240,A,,B,&,C (240,A,B,&,C). At low energy band, we has discovered a 0.5-1,GeV blob located to the south of 240,B,&,C, and a low flux of 0.3-1,GeV at 240,A. A hadronic model is build to explain our analysis results and previous multi-wavelength observations of W28. Our model consists of three CR sources: The run-away CRs escaped from a strong shock; The leaked GeV CRs from the broken shell -- W28-North; And the local CR sea. Through modelling the SNR evolution, CR acceleration,&,releasing, we have explained the GeV-TeV emission in/around SNR,W28 (except for 240,A) in one model. Both the damping of the magnetic waves by the neutrals and the decreased acceleration efficiency are taken into account in our model due to the mid-age of SNR W28.



rate research

Read More

Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission through the interaction of accelerated particles with the concentrated gas. The middle aged SNR W28, for its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12CO J=1-->0 molecular line emission). The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 +- 5) 10^-8 ph cm^-2 s^-1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations of the GeV to TeV flux ratio suggest a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronic-induced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by AGILE in the MeV-GeV energy range and by the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.
We report the detection of GeV gamma-ray emission from the molecular cloud complex that surrounds the supernova remnant (SNR) W44 using the Large Area Telescope (LAT) onboard Fermi. While the previously reported gamma-ray emission from SNR W44 is likely to arise from the dense radio-emitting filaments within the remnant, the gamma-ray emission that appears to come from the surrounding molecular cloud complex can be ascribed to the cosmic rays (CRs) that have escaped from W44. The non-detection of synchrotron radio emission associated with the molecular cloud complex suggests the decay of neutral pi mesons produced in hadronic collisions as the gamma-ray emission mechanism. The total kinetic energy channeled into the escaping CRs is estimated to be (0.3--3)x10^{50} erg, in broad agreement with the conjecture that SNRs are the main sources of Galactic CRs.
We present a detailed investigation of the $gamma$-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4$-$0.1) observed by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. We detected significant $gamma$-ray emission spatially coincident with TeV sources HESS J1800$-$240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radio emission from the western part of W28. All of the GeV $gamma$-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s$^{-1}$. Under the assumption that the $gamma$-ray emission towards HESS J1800-240A, B, and C comes from $pi^0$ decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than $sim$ 2 $times$ 10$^{49}$ erg. The emission from Source W can also be explained with the same CR escape scenario.
55 - Y. Cui , Y. Xin , S. Liu 2021
Context: The supernova remnant (SNR) G35.6-0.4 shows a non-thermal radio shell, however, no {gamma}-ray or X-ray counterparts have been found for it thus far. One TeV source, HESS J1858+020, was found near the SNR and this source is spatially associated with some clouds at 3.6 kpc. Aims: To attain a better understanding of the origin of HESS J1858+020, we further investigate the association between SNR cosmic rays (CRs) and the clouds through the Fermi-LAT analysis and hadronic modeling. Methods: We performed the Fermi-LAT analysis to explore the GeV emission in and around the SNR. We explored the SNR physics with previously observed multi-wavelength data. We built a hadronic model using runaway CRs of the SNR to explain the GeV-TeV observation. Results: We found a hard GeV source (SrcX2) that is spatially coincident with both HESS J1858+020 and a molecular cloud complex at 3.6 kpc. In addition, a soft GeV source (SrcX1) was found at the northern edge of the SNR. The GeV spectrum of SrcX2 connects well with the TeV spectrum of HESS J1858+020. The entire {gamma}-ray spectrum ranges from several GeV up to tens of TeV and it follows a power-law with an index of ~2.15. We discuss several pieces of observational evidence to support the middle-aged SNR argument. Using runaway CRs from the SNR, our hadronic model explains the GeV-TeV emission at HESS J1858+020, with a diffusion coefficient that is much lower than the Galactic value.
Circinus galaxy is a nearby composite starburst/AGN system. In this work we re-analyze the GeV emission from Circinus with 10 years of {it Fermi}-LAT Pass 8 data. In the energy range of 1-500 GeV, the spectrum can be well fitted by a power-law model with a photon index of $Gamma$ = $2.20pm0.14$, and its photon flux is $(5.90pm1.04) times 10^{-10}$ photons cm$^{-2}$ s$^{-1}$. Our 0.1-500 GeV flux is several times lower than that reported in the previous literature, which is roughly in compliance with the empirical relation for star-forming and local group galaxies and might be reproduced by the interaction between cosmic rays and the interstellar medium. The ratio between the $gamma$-ray luminosity and the total infrared luminosity is near the proton calorimetric limit, indicating that Circinus may be a proton calorimeter. However, marginal evidence for variability of the $gamma$-ray emission is found in the timing analysis, which may indicate the activity of AGN jet. More {it Fermi}-LAT data and future observation of CTA are required to fully reveal the origin of its $gamma$-ray emission.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا