On $k$-connected-homogeneous graphs


Abstract in English

A graph $Gamma$ is $k$-connected-homogeneous ($k$-CH) if $k$ is a positive integer and any isomorphism between connected induced subgraphs of order at most $k$ extends to an automorphism of $Gamma$, and connected-homogeneous (CH) if this property holds for all $k$. Locally finite, locally connected graphs often fail to be 4-CH because of a combinatorial obstruction called the unique $x$ property; we prove that this property holds for locally strongly regular graphs under various purely combinatorial assumptions. We then classify the locally finite, locally connected 4-CH graphs. We also classify the locally finite, locally disconnected 4-CH graphs containing 3-cycles and induced 4-cycles, and prove that, with the possible exception of locally disconnected graphs containing 3-cycles but no induced 4-cycles, every finite 7-CH graph is CH.

Download