Do you want to publish a course? Click here

Detecting large extra dimensions with optomechanical levitated sensors

147   0   0.0 ( 0 )
 Added by Jian Liu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Numbers of tabletop experiments have made efforts to detect large extra dimensions for the range from solar system to submillimeter system, but the direct evidence is still lacking. Here we present a scheme to test the gravitational law in 4+2 dimensions at microns by using cavity optomechanical method. We have investigated the probe spectrum for coupled quantum levitated oscillators in optical cavities. The results show that the spectral splitting can be obtained once the large extra dimensions present. Compare to the previous experiment, the sensitivity can be improved by the using of a specific geometry and a shield mirror to control and suppress the effect of the Casimir background. The weak frequency splitting can be optically read by the pump-probe scheme. Thus we can detect the gravitational deviation in the bulk based ADD model via spectroscopy without the isoelectronic technique.



rate research

Read More

We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or micro-discs. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.
Results are reported from a search for a class of composite dark matter models with feeble, long-range interactions with normal matter. We search for impulses arising from passing dark matter particles by monitoring the mechanical motion of an optically levitated nanogram mass over the course of several days. Assuming such particles constitute the dominant component of dark matter, this search places upper limits on their interaction with neutrons of $alpha_n leq 1.2 times 10^{-7}$ at 95% confidence for dark matter masses between 1--10 TeV and mediator masses $m_phi leq 0.1$ eV. Due to the large enhancement of the cross-section for dark matter to coherently scatter from a nanogram mass ($sim 10^{29}$ times that for a single neutron) and the ability to detect momentum transfers as small as $sim$200 MeV/c, these results provide sensitivity to certain classes of composite dark matter models that substantially exceeds existing searches, including those employing kg-scale or ton-scale targets. Extensions of these techniques can enable directionally-sensitive searches for a broad class of previously inaccessible heavy dark matter candidates.
Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion, and discuss the optimal measurement time required to determine said temperature.
We make a detailed study of the unification of gauge couplings in the MSSM with large extra dimensions. We find some scenarios where unification can be achieved (with the strong coupling constant at the Z mass within one standard deviation of the experimental value) with both the compactification scale and the SUSY breaking scale in the few TeV range. No enlargement of the gauge group or particle content is needed. One particularly interesting scenario is when the SUSY breaking scale is larger than the compactification scale, but both are small enough to be probed at the CERN LHC. Unification in two scales scenarios is also investigated and found to give results within the LHC.
We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilabs NuMI beam exposure of $10.56 times 10^{20}$ protons-on-target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. The ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than $0.45,mutext{m}$ at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Stronger limits are obtained for non-vanishing masses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا