Do you want to publish a course? Click here

Calculating charged particle observables using modified Wood Saxon model in HIJING for U+U collisions at $sqrt{s_{NN}}$ = 193 GeV

96   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We have implemented spherical harmonics in default Wood Saxon distribution of the HIJING model and calculated various physical observables such as transverse momentum, charged particle multiplicity, nuclear modification factor and particle ratios for charged particles at top RHIC energy with collisions of Uranium (U) nuclei. Results have been compared with available experimental data. We observe that, a particular type of collision configuration can produce significant magnitude change in observables. We have noticed that the tip-tip configuration shows higher magnitude of particle yield in central collisions, while the body-body configuration shows higher value in the cases of peripheral collisions, with the flip in the trend occurring for the mid-central U+U collisions. We observe that particle ratios are independent of configuration type.



rate research

Read More

The invariant yields for $J/psi$ production at forward rapidity $(1.2<|y|<2.2)$ in U$+$U collisions at $sqrt{s_{_{NN}}}$=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor $R_{AA}$ are presented and compared with those from Au$+$Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U$+$U and Au$+$Au collisions within the same centrality class is presented, and used to investigate the role of $cbar{c}$ coalescence. Two different parameterizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, $N_{rm coll}$, and these were found to give significantly different $N_{rm coll}$ values. Results using $N_{rm coll}$ values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the $J/psi$ suppression, relative to binary collision scaling, is similar in U$+$U and Au$+$Au for peripheral and midcentral collisions, but that $J/psi$ show less suppression for the most central U$+$U collisions. The results are consistent with a picture in which, for central collisions, increase in the $J/psi$ yield due to $cbar{c}$ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between $cbar{c}$ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine $N_{rm coll}$.
We predict the elliptic flow parameter v_2 in U+U collisions at sqrt{s_{NN}}=200 GeV and in Pb+Pb collisions at sqrt{s_{NN}} = 2.76 TeV using a hybrid model in which the evolution of the quark gluon plasma is described by ideal hydrodynamics with a state-of-the-art lattice QCD equation of state, and the subsequent hadronic stage by a hadron cascade model.
We report first measurements of $e^{+}e^{-}$ pair production in the mass region 0.4 $<M_{ee}<$ 2.6 GeV/$c^{2}$ at low transverse momentum ($p_T<$ 0.15 GeV/$c$) in non-central Au$+$Au collisions at $sqrt{s_{NN}}$ = 200 GeV and U$+$U collisions at $sqrt{s_{NN}}$ = 193 GeV. Significant enhancement factors, expressed as ratios of data over known hadronic contributions, are observed in the 40-80% centrality of these collisions. The excess yields peak distinctly at low-$p_T$ with a width ($sqrt{langle p^2_Trangle}$) between 40 to 60 MeV/$c$. The absolute cross section of the excess depends weakly on centrality while those from a theoretical model calculation incorporating an in-medium broadened $rho$ spectral function and radiation from a Quark Gluon Plasma or hadronic cocktail contributions increase dramatically with increasing number of participant nucleons. Model calculations of photon-photon interactions generated by the initial projectile and target nuclei describe the observed excess yields but fail to reproduce the $p^{2}_{T}$ distributions.
We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $Lambda$, $Xi$, and $Omega$) and $phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($varepsilon_{n}leftlbrace 2 rightrbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.
The isobaric collisions of $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr have recently been proposed to discern the charge separation signal of the chiral magnetic effect (CME). In this article, we employ the string melting version of a multiphase transport model to predict various charged-particle observables, including $dN/deta$, $p_T$ spectra, elliptic flow ($v_2$), and particularly possible CME signals in Ru + Ru and Zr + Zr collisions at $sqrt{s_{_{rm NN}}}$ = 200 GeV. Two sets of the nuclear structure parametrization have been explored, and the difference between the two isobaric collisions appears to be small, in terms of $dN/deta$, $p_T$ spectra, and $v_2$ for charged particles. We mimic the CME by introducing an initial charge separation that is proportional to the magnetic field produced in the collision, and study how the final-state interactions affect the CME observables. The relative difference in the CME signal between the two isobaric collisions is found to be robust, insensitive to the final-state interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا