Do you want to publish a course? Click here

Robustness of shape-restricted regression estimators: an envelope perspective

116   0   0.0 ( 0 )
 Added by Qiyang Han
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Classical least squares estimators are well-known to be robust with respect to moment assumptions concerning the error distribution in a wide variety of finite-dimensional statistical problems; generally only a second moment assumption is required for least squares estimators to maintain the same rate of convergence that they would satisfy if the errors were assumed to be Gaussian. In this paper, we give a geometric characterization of the robustness of shape-restricted least squares estimators (LSEs) to error distributions with an $L_{2,1}$ moment, in terms of the `localized envelopes of the model. This envelope perspective gives a systematic approach to proving oracle inequalities for the LSEs in shape-restricted regression problems in the random design setting, under a minimal $L_{2,1}$ moment assumption on the errors. The canonical isotonic and convex regression models, and a more challenging additive regression model with shape constraints are studied in detail. Strikingly enough, in the additive model both the adaptation and robustness properties of the LSE can be preserved, up to error distributions with an $L_{2,1}$ moment, for estimating the shape-constrained proxy of the marginal $L_2$ projection of the true regression function. This holds essentially regardless of whether or not the additive model structure is correctly specified. The new envelope perspective goes beyond shape constrained models. Indeed, at a general level, the localized envelopes give a sharp characterization of the convergence rate of the $L_2$ loss of the LSE between the worst-case rate as suggested by the recent work of the authors [25], and the best possible parametric rate.



rate research

Read More

We investigate two important properties of M-estimator, namely, robustness and tractability, in linear regression setting, when the observations are contaminated by some arbitrary outliers. Specifically, robustness means the statistical property that the estimator should always be close to the underlying true parameters {em regardless of the distribution of the outliers}, and tractability indicates the computational property that the estimator can be computed efficiently, even if the objective function of the M-estimator is {em non-convex}. In this article, by learning the landscape of the empirical risk, we show that under mild conditions, many M-estimators enjoy nice robustness and tractability properties simultaneously, when the percentage of outliers is small. We further extend our analysis to the high-dimensional setting, where the number of parameters is greater than the number of samples, $p gg n$, and prove that when the proportion of outliers is small, the penalized M-estimators with {em $L_1$} penalty will enjoy robustness and tractability simultaneously. Our research provides an analytic approach to see the effects of outliers and tuning parameters on the robustness and tractability for some families of M-estimators. Simulation and case study are presented to illustrate the usefulness of our theoretical results for M-estimators under Welschs exponential squared loss.
We study the asymptotic properties of bridge estimators in sparse, high-dimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficients are zero and covariates whose coefficients are nonzero. We show that under appropriate conditions, bridge estimators correctly select covariates with nonzero coefficients with probability converging to one and that the estimators of nonzero coefficients have the same asymptotic distribution that they would have if the zero coefficients were known in advance. Thus, bridge estimators have an oracle property in the sense of Fan and Li [J. Amer. Statist. Assoc. 96 (2001) 1348--1360] and Fan and Peng [Ann. Statist. 32 (2004) 928--961]. In general, the oracle property holds only if the number of covariates is smaller than the sample size. However, under a partial orthogonality condition in which the covariates of the zero coefficients are uncorrelated or weakly correlated with the covariates of nonzero coefficients, we show that marginal bridge estimators can correctly distinguish between covariates with nonzero and zero coefficients with probability converging to one even when the number of covariates is greater than the sample size.
136 - Qiyang Han , Jon A. Wellner 2017
We study the performance of the Least Squares Estimator (LSE) in a general nonparametric regression model, when the errors are independent of the covariates but may only have a $p$-th moment ($pgeq 1$). In such a heavy-tailed regression setting, we show that if the model satisfies a standard `entropy condition with exponent $alpha in (0,2)$, then the $L_2$ loss of the LSE converges at a rate begin{align*} mathcal{O}_{mathbf{P}}big(n^{-frac{1}{2+alpha}} vee n^{-frac{1}{2}+frac{1}{2p}}big). end{align*} Such a rate cannot be improved under the entropy condition alone. This rate quantifies both some positive and negative aspects of the LSE in a heavy-tailed regression setting. On the positive side, as long as the errors have $pgeq 1+2/alpha$ moments, the $L_2$ loss of the LSE converges at the same rate as if the errors are Gaussian. On the negative side, if $p<1+2/alpha$, there are (many) hard models at any entropy level $alpha$ for which the $L_2$ loss of the LSE converges at a strictly slower rate than other robust estimators. The validity of the above rate relies crucially on the independence of the covariates and the errors. In fact, the $L_2$ loss of the LSE can converge arbitrarily slowly when the independence fails. The key technical ingredient is a new multiplier inequality that gives sharp bounds for the `multiplier empirical process associated with the LSE. We further give an application to the sparse linear regression model with heavy-tailed covariates and errors to demonstrate the scope of this new inequality.
161 - Wenjia Wang , Bing-Yi Jing 2021
In this work, we investigate Gaussian process regression used to recover a function based on noisy observations. We derive upper and lower error bounds for Gaussian process regression with possibly misspecified correlation functions. The optimal convergence rate can be attained even if the smoothness of the imposed correlation function exceeds that of the true correlation function and the sampling scheme is quasi-uniform. As byproducts, we also obtain convergence rates of kernel ridge regression with misspecified kernel function, where the underlying truth is a deterministic function. The convergence rates of Gaussian process regression and kernel ridge regression are closely connected, which is aligned with the relationship between sample paths of Gaussian process and the corresponding reproducing kernel Hilbert space.
The paper continues the authors work on the adaptive Wynn algorithm in a nonlinear regression model. In the present paper it is shown that if the mean response function satisfies a condition of `saturated identifiability, which was introduced by Pronzato cite{Pronzato}, then the adaptive least squares estimators are strongly consistent. The condition states that the regression parameter is identifiable under any saturated design, i.e., the values of the mean response function at any $p$ distinct design points determine the parameter point uniquely where, typically, $p$ is the dimension of the regression parameter vector. Further essential assumptions are compactness of the experimental region and of the parameter space together with some natural continuity assumptions. If the true parameter point is an interior point of the parameter space then under some smoothness assumptions and asymptotic homoscedasticity of random errors the asymptotic normality of adaptive least squares estimators is obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا