No Arabic abstract
Optical methods for magnetism manipulation have been considered as a promising strategy for ultralow-power and ultrahigh-speed spin switches, which becomes a hot spot in the field of spintronics. However, a widely applicable and efficient method to combine optical operation with magnetic modulation is still highly desired. Here, the strongly correlated electron material VO2 is introduced to realize phase-transition based optical control of the magnetism in NiFe. The NiFe/VO2 bilayer heterostructure features appreciable modulations in electrical conductivity (55%), coercivity (60%), and magnetic anisotropy (33.5%). Further analyses indicate that interfacial strain coupling plays a crucial role in this modulation. Utilizing this optically controlled magnetism modulation feature, programmable Boolean logic gates (AND, OR, NAND, NOR, XOR, NXOR and NOT) for high-speed and low-power data processing are demonstrated based on this engineered heterostructure. As a demonstration of phase-transition spintronics, this work may pave the way for next-generation electronics in the post-Moore era.
In this work we show the presence of a magnetoelectric coupling in silicon-nitride gated Pt/Co/Pt heterostructures using X-ray photoemission electron microscopy (XPEEM). We observe a change in magnetic anisotropy in the form of domain wall nucleation and a change in the rate of domain wall fluctuation as a function of the applied electric field to the sample. We also observe the coexistence of in-plane and out of plane magnetization in Pt/Co/Pt heterostructures in a region around the spin reorientation transition whose formation is attributed to substrate surface roughness comparable to the film thickness; with such domain configuration, we find that the in-plane magnetization is more sensitive to the applied electric field than out of plane magnetization. Although we find an effective magnetoelectric coupling in our system, the presence of charge defects in the silicon nitride membranes hampers a systematic electrostatic control of the magnetization.
Using polarized neutron reflectometry (PNR) we measured the neutron spin dependent reflectivity from four LaAlO3/SrTiO3 superlattices. This experiment implies that the upper limit for the magnetization induced by an 11 T magnetic field at 1.7 K is 2 emu/cm3. SQUID magnetometry of the superlattices sporadically finds an enhanced moment, possibly due to experimental artifacts. These observations set important restrictions on theories which imply a strongly enhanced magnetism at the interface between LaAlO3 and SrTiO3.
Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergence of ferromagnetism in polar-mismatched LaMnO3/SrTiO3 (001) heterostructures. Using a combination of element-specific X-ray absorption spectroscopy and dichroism, and first-principles calculations, interfacial electron accumulation and ferromagnetism have been observed within the polar, antiferromagnetic insulator LaMnO3. Our results show that the critical thickness for the onset of electron accumulation is as thin as 2 unit cells (UC), significantly thinner than the observed critical thickness for ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely induced by electron over-accumulation. In turn, by controlling the doping of the LaMnO3, we are able to neutralize the excessive electrons from the polar mismatch in ultrathin LaMnO3 films and thus enable ferromagnetism in films as thin as 3 UC, extending the limits of our ability to synthesize and tailor emergent phenomena at interfaces and demonstrating manipulation of the electronic and magnetic structures of materials at the shortest length scales.
Second harmonic generation magneto-optic Kerr effect (SHMOKE) experiments, sensitive to buried interfaces, were performed on a polycrystalline NiFe/FeMn bilayer in which areas with different exchange bias fields were prepared using 5 KeV He ion irradiation. Both reversible and irreversible uncompensated spins are found in the antiferromagnetic layer close to the interface with the ferromagnetic layer. The SHMOKE hysteresis loop shows the same exchange bias field as obtained from standard magnetometry. We demonstrate that the exchange bias effect is controlled by pinned uncompensated spins in the antiferromagnetic layer.
In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magnetoelectric coupling mechanisms. We directly observe, for the first time, in situ voltage driven O$^{2-}$ migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.6 erg/cm$^2$. We exploit the thermally-activated nature of ion migration to dramatically increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.