No Arabic abstract
Adsorbate engineering is a promising route for controlling the electronic properties of monolayer transition-metal dichalcogenide materials. Here, we study shallow bound states induced by charged adatoms on MoS$_2$ using large-scale tight-binding simulations with screened adatom potentials obtained from ab initio calculations. The interplay of unconventional screening in two-dimensional systems and multivalley effects in the transition-metal dichalcogenide (TMDC) band structure results in a rich diversity of bound impurity states. We present results for impurity state wavefunctions and energies, as well as for the local density of states in the vicinity of the adatom which can be measured using scanning tunnelling spectroscopy. We find that the presence of several distinct valleys in the MoS$_2$ band structure gives rise to crossovers of impurity states at critical charge strengths, altering the orbital character of the most strongly bound state. We compare our results to simpler methods, such as the 2D hydrogen atom and effective mass theory, and we discuss limitations of these approaches.
We periodically kick a local region in a one-dimensional lattice and demonstrate, by studying wave packet dynamics, that the strength and the time period of the kicking can be used as tuning parameters to control the transmission probability across the region. Interestingly, we can tune the transmission to zero which is otherwise impossible to do in a time-independent system. We adapt the non-equilibrium Greens function method to take into account the effects of periodic driving; the results obtained by this method agree with those found by wave packet dynamics if the time period is small. We discover that Floquet bound states can exist in certain ranges of parameters; when the driving frequency is decreased, these states get delocalized and turn into resonances by mixing with the Floquet bulk states. We extend these results to incorporate the effects of local interactions at the driven site, and we find some interesting features in the transmission and the bound states.
A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS$_2$ using a combination of scanning tunnelling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multi-valley valence band structure of WS$_2$, whereby localized states originating from the secondary valence band maximum at $Gamma$ hybridize with continuum states from the primary valence band maximum at K/K$^{prime}$. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds.
Atomically thin transition metal dichalcogenides (TMDs) are ideal candidates for ultrathin optoelectronics that is flexible and semitransparent. Photodetectors based on TMDs show remarkable performance, with responsivity and detectivity higher than 10^3 A/W and 10^12 Jones, respectively, but they are plagued by response times as slow as several tens of seconds. Although it is well established that gas adsorbates such as water and oxygen create charge traps and significantly increase both the responsivity and the response time, the underlying mechanism is still unclear. Here we study the influence of adsorbates on MoS2 photodetectors under ambient conditions, vacuum and illumination at different wavelengths. We show that, for wavelengths sufficiently short to excite electron-hole pairs in the MoS2, light illumination causes desorption of water and oxygen molecules. The change in the molecular gating provided by the physisorbed molecules is the dominant contribution to the device photoresponse in ambient conditions.
Electromagnetic fields bound tightly to charge carriers in a two-dimensional sheet, namely surface plasmons, are shielded by metallic plates that are a part of a device. It is shown that for epitaxial graphenes, the propagation velocity of surface plasmons is suppressed significantly through a partial screening of the electron charge by the interface states. On the basis of analytical calculations of the electron lifetime determined by the screened Coulomb interaction, we show that the screening effect gives results in agreement with those of a recent experiment.
A residual disorder in the gate system is the main problem on the way to create artificial graphene based on two-dimensional electron gas. The disorder can be significantly screened/reduced due to the many-body effects. To analyse the screening/disorder problem we consider AlGaAs/GaAs/AlGaAs heterostructure with two metallic gates. We demonstrate that the design least susceptible to the disorder corresponds to the weak coupling regime (opposite to tight binding) which is realised via system of quantum anti-dots. The most relevant type of disorder is the area disorder which is a random variation of areas of quantum anti-dots. The area disorder results in formation of puddles. Other types of disorder, the position disorder and the shape disorder, are practically irrelevant. The formation/importance of puddles dramatically depends on parameters of the nanopatterned heterostructure. A variation of the parameters by 20--30% can change the relative amplitude of puddles by orders of magnitude. Based on this analysis we formulate criteria for the acceptable design of the heterostructure aimed at creation of the artificial graphene.