No Arabic abstract
We report the quadruple nature of the source WISE 025942.9-163543 as observed in the VST-ATLAS survey. Spectra of the two brightest images show quasar emission lines at z=2.16. The system was discovered by splitting ATLAS cutouts of WISE sources with W1-W2 > 0.7, when possible, into three components. Followup Magellan images were used to obtain astrometry and g and i photometry, with i=18.78 and 19.73, respectively, for the brightest and faintest components. Absorption lines are observed at z=0.905 but there is little evidence for a lensing galaxy after PSF fitting and subtraction. Saha and Williams (2003) would classify ATLAS 0259-1635 as a short-axis quad. The larger and smaller diameters are 1.57 and 1.32 arcseconds, respectively. Modeling the lensing galaxy as a singular isothermal sphere with external shear, the largest and smallest predicted magnifications are 10.8 and 6.4 respectively.
We have analyzed images from the VST ATLAS survey to identify candidate gravitationally lensed quasar systems in a sample of WISE sources with W1 - W2 > 0.7. Results from followup spectroscopy with the Baade 6.5 m telescope are presented for eight systems. One of these is a quadruply lensed quasar and two are doubly lensed systems. Two are projected superpositions of two quasars at different redshifts. In one system two quasars, though at the same redshift, have very different emission line profiles, and constitute a physical binary. In two systems the component spectra are consistent with the lensing hypothesis, after allowing for micro-lensing. But as no lensing galaxy is detected in these two, we classify them as lensless twins. More extensive observations are needed to establish whether they are in fact lensed quasars or physical binaries.
We present Keck Cosmic Web Imager spectroscopy of the four putative images of the lensed quasar candidate J014709+463037 recently discovered by Berghea et al. (2017). The data verify the source as a quadruply lensed, broad absorption-line quasar having z_S = 2.377 +/- 0.007. We detect intervening absorption in the FeII 2586, 2600, MgII 2796, 2803, and/or CIV 1548, 1550 transitions in eight foreground systems, three of which have redshifts consistent with the photometric-redshift estimate reported for the lensing galaxy (z_L ~ 0.57). By virtue of their positions on the sky, the source images probe these absorbers over transverse physical scales of ~0.3-21 kpc, permitting assessment of the variation in metal-line equivalent width W_r as a function of sight-line separation. We measure differences in W_r,2796 of <40% across all sight-line pairs subtending 7-21 kpc, suggestive of a high degree of spatial coherence for MgII-absorbing material. W_r,2600 is observed to vary by >50% over the same scales across the majority of sight-line pairs, while CIV absorption exhibits a wide range in W_r,1548 differences of ~5-80% within transverse distances less than ~3 kpc. J014709+463037 is one of only a handful of z > 2 quadruply lensed systems for which all four source images are very bright (r = 15.4-17.7 mag) and are easily separated in ground-based seeing conditions. As such, it is an ideal candidate for higher-resolution spectroscopy probing the spatial variation in the kinematic structure and physical state of intervening absorbers.
The Southern Hemisphere has just recently begun to be charted by wide-field surveys, with a sufficient depth and image quality to enable the discovery of strongly lensed quasars. The quadruply imaged quasar WG0214-2105 (r.a.=02:14:16.37, dec.=-21:05:35.3) is a previously unknown lens, with `blue mid-IR colors and high UV deficit, found in the intersection of three survey footprints: the Dark Energy Survey public DR1 (DES, Abbott et al. 2018), The VST-ATLAS (Shanks et al. 2015) and Pan-STARRS (Chambers et al. 2016). Its discovery relied on high spatial resolution from the Gaia mission (Lindegren et al. 2016) and mid-IR color preselection in the WISE catalog (Wright et al. 2010).
We report the discovery of the quadruply lensed quasar J1433+6007, mined in the SDSS DR12 photometric catalogues using a novel outlier-selection technique, without prior spectroscopic or UV excess information. Discovery data obtained at the Nordic Optical telescope (NOT, La Palma) show nearly identical quasar spectra at $z_s=2.74$ and four quasar images in a fold configuration, one of which sits on a blue arc. The deflector redshift is $z_{l}=0.407,$ from Keck-ESI spectra. We describe the selection procedure, discovery and follow-up, image positions and $BVRi$ magnitudes, and first results and forecasts from simple lens models.
We report on discovery results from a quasar lens search in the ATLAS public footprint, extending quasar lens searches to a regime without $u-$band or fiber-spectroscopic information, using a combination of data mining techniques on multi-band catalog magnitudes and image-cutout modelling. Spectroscopic follow-up campaigns, conducted at the 2.6m Nordic Optical Telescope (La Palma) and 3.6m New Technology Telescope (La Silla) in 2016, yielded seven pairs of quasars exhibiting the same lines at the same redshift and monotonic flux-ratios with wavelength (hereafter NIQs, Nearly Identical Quasar pairs). The quasar redshifts range between $approx1.2$ and $approx 2.7;$ contaminants are typically pairs of bright blue stars, quasar-star alignments along the line of sight, and narrow-line galaxies at $0.3<z<0.7.$ Magellan data of A0140-1152 (01$^h$40$^m$03.0$^s$-11$^d$52$^m$19.0$^s$, $z_{s}=1.807$) confirm it as a lens with deflector at $z_{l}=0.277$ and Einstein radius $theta_{rm E}=(0.73pm0.02)^ase$. We show the use of spatial resolution from the Gaia mission to select lenses and list additional systems from a WISE-Gaia-ATLAS search, yielding three additional lenses (02$^h$35$^m$27.4$^s$-24$^d$33$^m$13.2$^s$, 02$^h$59$^m$33.$^s$-23$^d$38$^m$01.8$^s$, 01$^h$46$^m$32.9$^s$-11$^d$33$^m$39.0$^s$). The overall sample consists of 11 lenses/NIQs, plus three lenses known before 2016, over the ATLAS-DR3 footprint ($approx3500$~deg$^2$). Finally, we discuss future prospects for objective classification of pair/NIQ/contaminant spectra.