Do you want to publish a course? Click here

Impact of thermal annealing on graphene devices encapsulated in hexagonal boron nitride

407   0   0.0 ( 0 )
 Added by Christoph Stampfer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a thermal annealing study on single-layer and bilayer (BLG) graphene encapsulated in hexagonal boron nitride. The samples are characterized by electron transport and Raman spectroscopy measurements before and after each annealing step. While extracted material properties such as charge carrier mobility, overall doping, and strain are not influenced by the annealing, an initial annealing step lowers doping and strain variations and thus results in a more homogeneous sample. Additionally, the narrow 2D-sub-peak widths of the Raman spectrum of BLG, allow us to extract information about strain and doping values from the correlation of the 2D-peak and the G-peak positions.



rate research

Read More

300 - M. Gurram , S. Omar , S. Zihlmann 2016
We study fully hexagonal boron nitride (hBN)-encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes; thick-hBN flake as a bottom gate dielectric substrate which masks the charge impurities from SiO2/Si substrate and single-layer thin-hBN flake as a tunnel barrier. Full encapsulation prevents the graphene from coming in contact with any polymer/chemical during the lithography and thus gives homogeneous charge and spin transport properties across different regions of the encapsulated graphene. Further, even with the multiple electrodes in between the injection and the detection electrodes which are in conductivity mismatch regime, we observe spin transport over 12.5 um long distance under the thin-hBN encapsulated graphene channel, demonstrating the clean interface and the pin-hole free nature of the thin-hBN as an efficient tunnel barrier.
103 - Nicolas Leconte , Jeil Jung 2019
Interference of double moire patterns of graphene (G) encapsulated by hexagonal boron nitride (BN) can alter the electronic structure features near the primary/secondary Dirac points and the electron-hole symmetry introduced by a single G/BN moire pattern depending on the relative stacking arrangements of the top/bottom BN layers. We show that strong interference effects are found in nearly aligned BN/G/BN and BN/G/NB and obtain the evolution of the associated density of states as a function of moire superlattice twist angles. For equal moire periods and commensurate patterns with $Delta phi = 0^{circ}$ modulo $60^{circ}$ angle differences the patterns can add up constructively leading to large pseudogaps of about $sim 0.5$ eV on the hole side or cancel out destructively depending on their relative sliding, e.g. partially recovering electron-hole symmetry. The electronic structure of moire quasicrystals for $Delta phi =30^{circ}$ differences reveal double moire features in the density of states with almost isolated van Hove singularities where we can expect strong correlations.
292 - S. Engels , A. Epping , C. Volk 2013
We report on the fabrication and characterization of etched graphene quantum dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island diameters. We perform a statistical analysis of Coulomb peak spacings over a wide energy range. For graphene QDs on hBN, the standard deviation of the normalized peak spacing distribution decreases with increasing QD diameter, whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T. Both results indicate a substantially reduced substrate induced disorder potential in graphene QDs on hBN.
Graphene sheets encapsulated between hexagonal Boron Nitride (hBN) slabs display superb electronic properties due to very limited scattering from extrinsic disorder sources such as Coulomb impurities and corrugations. Such samples are therefore expected to be ideal platforms for highly-tunable low-loss plasmonics in a wide spectral range. In this Article we present a theory of collective electron density oscillations in a graphene sheet encapsulated between two hBN semi-infinite slabs (hBN/G/hBN). Graphene plasmons hybridize with hBN optical phonons forming hybrid plasmon-phonon (HPP) modes. We focus on scattering of these modes against graphenes acoustic phonons and hBN optical phonons, two sources of scattering that are expected to play a key role in hBN/G/hBN stacks. We find that at room temperature the scattering against graphenes acoustic phonons is the dominant limiting factor for hBN/G/hBN stacks, yielding theoretical inverse damping ratios of hybrid plasmon-phonon modes of the order of $50$-$60$, with a weak dependence on carrier density and a strong dependence on illumination frequency. We confirm that the plasmon lifetime is not directly correlated with the mobility: in fact, it can be anti-correlated.
When a crystal is subjected to a periodic potential, under certain circumstances (such as when the period of the potential is close to the crystal periodicity; the potential is strong enough, etc.) it might adjust itself to follow the periodicity of the potential, resulting in a, so called, commensurate state. Such commensurate-incommensurate transitions are ubiquitous phenomena in many areas of condensed matter physics: from magnetism and dislocations in crystals, to vortices in superconductors, and atomic layers adsorbed on a crystalline surface. Of particular interest might be the properties of topological defects between the two commensurate phases: solitons, domain walls, and dislocation walls. Here we report a commensurate-incommensurate transition for graphene on top of hexagonal boron nitride (hBN). Depending on the rotational angle between the two hexagonal lattices, graphene can either stretch to adjust to a slightly different hBN periodicity (the commensurate state found for small rotational angles) or exhibit little adjustment (the incommensurate state). In the commensurate state, areas with matching lattice constants are separated by domain walls that accumulate the resulting strain. Such soliton-like objects present significant fundamental interest, and their presence might explain recent observations when the electronic, optical, Raman and other properties of graphene-hBN heterostructures have been notably altered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا