Do you want to publish a course? Click here

Shaped Pulses for Energy Efficient High-Field NMR at the Nanoscale

69   0   0.0 ( 0 )
 Added by Jorge Casanova
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The realisation of optically detected magnetic resonance via nitrogen vacancy centers in diamond faces challenges at high magnetic fields which include growing energy consumption of control pulses as well as decreasing sensitivities. Here we address these challenges with the design of shaped pulses in microwave control sequences that achieve orders magnitude reductions in energy consumption and concomitant increases in sensitivity when compared to standard top-hat microwave pulses. The method proposed here is general and can be applied to any quantum sensor subjected to pulsed control sequences.

rate research

Read More

The nitrogen vacancy (NV) color center in diamond is an enormously important platform for the development of quantum sensors, including for single spin and single molecule NMR. Detection of weak single-spin signals is greatly enhanced by repeated sequences of microwave pulses; in these dynamical decoupling (DD) techniques, the key control parameters swept in the experiment are the time intervals, $tau$, between pulses. Here we show that, in fact, the pulse duration offers a powerful additional control parameter. While previously, a non-negligible pulse-width has been considered simply a source of experimental error, here we elucidate the underlying quantum dynamics: we identify a landscape of quantum-state crossings which are usually closed (inactive) but may be controllably activated (opened) by adjusting the pulse-width from zero. We identify these crossings with recently observed but unexpected dips (so called spurious dips) seen in the quantum coherence of the NV spin. With this new understanding, both the position and strength of these sharp features may be accurately controlled; they co-exist with the usual broader coherence dips of short-duration microwave pulses, but their sharpness allows for higher resolution spectroscopy with quantum diamond sensors, or their analogues.
103 - J. Zopes , K. Sasaki , K. S. Cujia 2017
We investigate the application of amplitude-shaped control pulses for enhancing the time and frequency resolution of multipulse quantum sensing sequences. Using the electronic spin of a single nitrogen vacancy center in diamond and up to 10,000 coherent microwave pulses with a cosine square envelope, we demonstrate 0.6 ps timing resolution for the interpulse delay. This represents a refinement by over 3 orders of magnitude compared to the 2 ns hardware sampling. We apply the method for the detection of external AC magnetic fields and nuclear magnetic resonance signals of carbon-13 spins with high spectral resolution. Our method is simple to implement and especially useful for quantum applications that require fast phase gates, many control pulses, and high fidelity.
We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Removal by Adiabatic Gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg blockade we generate Bell states with a fidelity of $F>0.9999$ in a 300 K environment for a gate time of only $50;{rm ns}$, which is an order of magnitude faster than previous protocols. These results establish the potential of neutral atom qubits with Rydberg blockade gates for scalable quantum computation.
Nuclear magnetic resonance (NMR) schemes can be applied to micron-, and nanometer-sized samples by the aid of quantum sensors such as nitrogen-vacancy (NV) color centers in diamond. These minute devices allow for magnetometry of nuclear spin ensembles with high spatial and frequency resolution at ambient conditions, thus having a clear impact in different areas such as chemistry, biology, medicine, and material sciences. In practice, NV quantum sensors are driven by microwave (MW) control fields with a twofold objective: On the one hand, MW fields bridge the energy gap between NV and nearby nuclei which enables a coherent and selective coupling among them while, on the other hand, MW fields remove environmental noise on the NV leading to enhanced interrogation time. In this work we review distinct MW radiation patterns, or dynamical decoupling techniques, for nanoscale NMR applications.
Apart from maximizing the strength of optical electromagnetic fields achievable at high-intensity laser facilities, the collision of several phase-matched laser pulses has been theoretically identified as a trigger of and way to study various phenomena. These range from the basic processes of strong-field quantum electrodynamics to the extraordinary dynamics of the generated electron-positron plasmas. This has paved the way for several experimental proposals aimed at both fundamental studies of matter at extreme conditions and the creation of particle and radiation sources. Because of the unprecedented capabilities of such sources they have the potential to open up new opportunities for experimental studies in nuclear and quark-gluon physics. We here perform a systematic analysis of different regimes and opportunities achievable with the concept of multiple-colliding laser pulses (MCLP), for both current and upcoming laser facilities. We reveal that several distinct regimes could be within reach of multi-PW laser facilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا