Do you want to publish a course? Click here

Infinitely many periodic solutions for a semilinear wave equation with $x$-dependent coefficients

303   0   0.0 ( 0 )
 Added by Shuguan Ji
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper is devoted to the study of periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficients under various homogeneous boundary conditions. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with an approximation argument, we prove that there exist infinitely many periodic solutions whenever the period is a rational multiple of the length of the spatial interval. The proof is essentially based on the spectral properties of the wave operator with $x$-dependent coefficients.



rate research

Read More

245 - Hui Wei , Shuguan Ji 2018
This paper is concerned with the periodic (in time) solutions to an one-dimensional semilinear wave equation with $x$-dependent coefficient. Such a model arises from the forced vibrations of a nonhomogeneous string and propagation of seismic waves in nonisotropic media. By combining variational methods with saddle point reduction technique, we obtain the existence of at least three periodic solutions whenever the period is a rational multiple of the length of the spatial interval. Our method is based on a delicate analysis for the asymptotic character of the spectrum of the wave operator with $x$-dependent coefficients, and the spectral properties play an essential role in the proof.
170 - Hui Wei , Shuguan Ji 2017
This paper is devoted to the study of periodic solutions for a radially symmetric semilinear wave equation in an $n$-dimensional ball. By combining the variational methods and saddle point reduction technique, we prove there exist at least three periodic solutions for arbitrary space dimension $n$. The structure of the spectrum of the linearized problem plays an essential role in the proof, and the construction of a suitable working space is devised to overcome the restriction of space dimension.
210 - Hui Wei , Shuguan Ji 2020
This paper is devoted to the study of periodic solutions for a semilinear Euler-Bernoulli beam equation with variable coefficients. Such mathematical model may be described the infinitesimal, free, undamped in-plane bending vibrations of a thin straight elastic beam. When the frequency $omega =frac{2pi}{T}$ is rational, some properties of the beam operator with variable coefficients are investigated. We obtain the existence of periodic solutions when the nonlinear term is monotone and bounded.
103 - Mengyu Cheng , Zhenxin Liu 2019
In this paper, we use the variational approach to investigate recurrent properties of solutions for stochastic partial differential equations, which is in contrast to the previous semigroup framework. Consider stochastic differential equations with monotone coefficients. Firstly, we establish the continuous dependence on initial values and coefficients for solutions. Secondly, we prove the existence of recurrent solutions, which include periodic, almost periodic and almost automorphic solutions. Then we show that these recurrent solutions are globally asymptotically stable in square-mean sense. Finally, for illustration of our results we give two applications, i.e. stochastic reaction diffusion equations and stochastic porous media equations.
We consider a nonlinear 4th-order degenerate parabolic partial differential equation that arises in modelling the dynamics of an incompressible thin liquid film on the outer surface of a rotating horizontal cylinder in the presence of gravity. The parameters involved determine a rich variety of qualitatively different flows. Depending on the initial data and the parameter values, we prove the existence of nonnegative periodic weak solutions. In addition, we prove that these solutions and their gradients cannot grow any faster than linearly in time; there cannot be a finite-time blow-up. Finally, we present numerical simulations of solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا