Do you want to publish a course? Click here

Stochastic differential equations driven by deterministic chaotic maps: analytic solutions of the Perron-Frobenius equation

134   0   0.0 ( 0 )
 Added by Christian Beck
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We consider discrete-time dynamical systems with a linear relaxation dynamics that are driven by deterministic chaotic forces. By perturbative expansion in a small time scale parameter, we derive from the Perron-Frobenius equation the corrections to ordinary Fokker-Planck equations in leading order of the time scale separation parameter. We present analytic solutions to the equations for the example of driving forces generated by N-th order Chebychev maps. The leading order corrections are universal for N larger or equal to 4 but different for N=2 and N=3. We also study diffusively coupled Chebychev maps as driving forces, where strong correlations may prevent convergence to Gaussian limit behavior.



rate research

Read More

209 - Yan Wang 2014
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bounded solutions. Furthermore, this unique bounded solution is almost periodic in distribution under slightly stronger conditions. We also give two examples to illustrate our results.
Using a temporally weighted norm we first establish a result on the global existence and uniqueness of solutions for Caputo fractional stochastic differential equations of order $alphain(frac{1}{2},1)$ whose coefficients satisfy a standard Lipschitz condition. For this class of systems we then show that the asymptotic distance between two distinct solutions is greater than $t^{-frac{1-alpha}{2alpha}-eps}$ as $t to infty$ for any $eps>0$. As a consequence, the mean square Lyapunov exponent of an arbitrary non-trivial solution of a bounded linear Caputo fractional stochastic differential equation is always non-negative.
We study a stochastic differential equation driven by a gamma process, for which we give results on the existence of weak solutions under conditions on the volatility function. To that end we provide results on the density process between the laws of solutions with different volatility functions.
We study the rational solutions of the Abel equation $x=A(t)x^3+B(t)x^2$ where $A,Bin C[t]$. We prove that if $deg(A)$ is even or $deg(B)>(deg(A)-1)/2$ then the equation has at most two rational solutions. For any other case, an upper bound on the number of rational solutions is obtained. Moreover, we prove that if there are more than $(deg(A)+1)/2$ rational solutions then the equation admits a Darboux first integral.
Stochastic differential equations and stochastic dynamics are good models to describe stochastic phenomena in real world. In this paper, we study N independent stochastic processes Xi(t) with real entries and the processes are determined by the stochastic differential equations with drift term relying on some random effects. We obtain the Girsanov-type formula of the stochastic differential equation driven by Fractional Brownian Motion through kernel transformation. Under some assumptions of the random effect, we estimate the parameter estimators by the maximum likelihood estimation and give some numerical simulations for the discrete observations. Results show that for the different H, the parameter estimator is closer to the true value as the amount of data increases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا