Do you want to publish a course? Click here

On the use of the main sequence knee (saddle) to measure globular cluster ages

65   0   0.0 ( 0 )
 Added by Sara Saracino
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we review the operational definition of the so-called main sequence knee (MS-knee), a feature in the color-magnitude diagram (CMD) occurring at the low-mass end of the MS. The magnitude of this feature is predicted to be independent of age at fixed chemical composition. For this reason, its difference in magnitude with respect to the MS turn-off (MS-TO) point has been suggested as a possible diagnostic to estimate absolute globular cluster (GC) ages. We first demonstrate that the operational definition of the MS-knee currently adopted in the literature refers to the inflection point of the MS (that we here more appropriately named MS-saddle), a feature that is well distinct from the knee and that cannot be used as its proxy. The MS-knee is only visible in near-infrared CMDs, while the MS-saddle can be also detected in optical-NIR CMDs. By using different sets of isochrones we then demonstrate that the absolute magni- tude of the MS-knee varies by a few tenths of a dex from one model to another, thus showing that at the moment stellar models may not capture the full systematic error in the method. We also demonstrate that while the absolute magnitude of the MS-saddle is almost coincident in different models, it has a systematic dependence on the adopted color combinations which is not predicted by stellar models. Hence, it cannot be used as a reliable reference for absolute age determination. Moreover, when statistical and systematic uncertainties are properly taken into ac- count, the difference in magnitude between the MS-TO and the MS-saddle does not provide absolute ages with better accuracy than other methods like the MS-fitting.



rate research

Read More

125 - Santi Cassisi 2016
One crucial piece of information to study the origin of multiple stellar populations in globular clusters, is the range of initial helium abundances $Delta{Y}$ amongst the sub-populations hosted by each cluster. These estimates are commonly obtained by measuring the width in colour of the unevolved main sequence in an optical colour-magnitude-diagram. The measured colour spread is then compared with predictions from theoretical stellar isochrones with varying initial He abundances, to determine $Delta{Y}$. The availability of UV/optical magnitudes thanks to the {sl HST UV Legacy Survey of Galactic GCs} project, will allow the homogeneous determination of $Delta{Y}$ for a large Galactic globular cluster sample. From a theoretical point of view, accurate UV CMDs can efficiently disentangle the various sub-populations, and main sequence colour differences in the ACS $F606W-(F606W-F814W)$ diagram allow an estimate of $Delta{Y}$. We demonstrate that from a theoretical perspective the ($F606W-F814W$) colour is an extremely reliable He-abundance indicator. The derivative d$Y$/d($F606W-F814W$), computed at a fixed luminosity along the unevolved main sequence, is largely insensitive to the physical assumptions made in stellar model computations, being more sensitive to the choice of the bolometric correction scale, and is only slightly dependent on the adopted set of stellar models. From a theoretical point of view the ($F606W-F814W$) colour width of the cluster main sequence is therefore a robust diagnostic of the $Delta{Y}$ range.
141 - Matteo Correnti 2016
We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (~ 100 Myr) star cluster NGC1850 in the Large Magellanic Cloud. We analyze the cluster colour-magnitude diagram (CMD) and find that it hosts an extended main sequence turn-off (MSTO) and a double MS. We demonstrate that these features cannot be due to photometric errors, field star contamination, or differential reddening. From a comparison with theoretical models and Monte Carlo simulations, we show that a coeval stellar population featuring a distribution of stellar rotation rates can reproduce the MS split quite well. However, it cannot reproduce the observed MSTO region, which is significantly wider than the simulated ones. Exploiting narrow-band Halpha imaging, we find that the MSTO hosts a population of Halpha-emitting stars which are interpreted as rapidly rotating Be-type stars. We explore the possibility that the discrepancy between the observed MSTO morphology and that of the simulated simple stellar population (SSP) is caused by the fraction of these objects that are highly reddened, but we rule out this hypothesis. We demonstrate that the global CMD morphology is well-reproduced by a combination of SSPs that cover an age range of ~ 35 Myr as well as a wide variety of rotation rates. We derive the cluster mass and escape velocity and use dynamical evolution models to predict their evolution starting at an age of 10 Myr. We discuss these results and their implications in the context of the extended MSTO phenomenon.
102 - Roger E. Cohen 2019
The binary fractions of open and globular clusters yield powerful constraints on their dynamical state and evolutionary history. We apply publicly available Bayesian analysis code to a $UBVRIJHK_{S}$ photometric catalog of the old open cluster NGC 188 to detect and characterize photometric binaries along the cluster main sequence. This technique has the advantage that it self-consistently handles photometric errors, missing data in various bandpasses, and star-by-star prior constraints on cluster membership. Simulations are used to verify uncertainties and quantify selection biases in our analysis, illustrating that among binaries with mass ratios >0.5, we recover the binary fraction to better than 7% in the mean, with no significant dependence on binary fraction and a mild dependence on assumed mass ratio distribution. Using our photometric catalog, we recover the majority (65%$pm$11%) of spectroscopically identified main sequence binaries, including 8 of the 9 with spectroscopically measured mass ratios. Accounting for incompleteness and systematics, we derive a mass ratio distribution that rises toward lower mass ratios (within our $q >$0.5 analysis domain). We observe a raw binary fraction for solar-type main sequence stars with mass ratios $q >$0.5 of 42%$pm$4%, independent of the assumed mass ratio distribution to within its uncertainties, consistent with literature values for old open clusters but significantly higher than the field solar-type binary fraction. We confirm that the binaries identified by our method are more concentrated than single stars, in agreement with previous studies, and we demonstrate that the binary nature of those candidates which remain unidentified spectroscopically is strongly supported by photometry from Gaia DR2.
Using asteroseismic data and stellar evolution models we make the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence life time is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.
Intermediate-age star clusters in the LMC present extended main sequence turnoffs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequences can also be produced by ill-characterized stellar variability. Here we present Gemini-S/GMOS time series observations of the intermediate-age cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects we estimate the number of Delta Scuti belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single Delta Scuti within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of Delta Scuti makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results are a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its Delta Scuti population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا