Spacetime diffeomorphisms as matter fields


Abstract in English

We work on a 4-manifold equipped with Lorentzian metric $g$ and consider a volume-preserving diffeomorphism which is the unknown quantity of our mathematical model. The diffeomorphism defines a second Lorentzian metric $h$, the pullback of $g$. Motivated by elasticity theory, we introduce a Lagrangian expressed algebraically (without differentiations) via our pair of metrics. Analysis of the resulting nonlinear field equations produces three main results. Firstly, we show that for Ricci-flat manifolds our linearised field equations are Maxwells equations in the Lorenz gauge with exact current. Secondly, for Minkowski space we construct explicit massless solutions of our nonlinear field equations; these come in two distinct types, right-handed and left-handed. Thirdly, for Minkowski space we construct explicit massive solutions of our nonlinear field equations; these contain a positive parameter which has the geometric meaning of quantum mechanical mass and a real parameter which may be interpreted as electric charge. In constructing explicit solutions of nonlinear field equations we resort to group-theoretic ideas: we identify special 4-dimensional subgroups of the Poincare group and seek diffeomorphisms compatible with their action, in a suitable sense.

Download