Do you want to publish a course? Click here

Varying the forcing scale in low Prandtl number dynamos

67   0   0.0 ( 0 )
 Added by Axel Brandenburg
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.



rate research

Read More

In this paper we examine the role of weak magnetic fields in breaking Kelvins circulation theorem and in vortex breakup in two-dimensional magnetohydrodynamics for the physically important case of a low magnetic Prandtl number (low $Pm$) fluid. We consider three canonical inviscid solutions for the purely hydrodynamical problem, namely a Gaussian vortex, a circular vortex patch and an elliptical vortex patch. We examine how magnetic fields lead to an initial loss of circulation $Gamma$ and attempt to derive scaling laws for the loss of circulation as a function of field strength and diffusion as measured by two non-dimensional parameters. We show that for all cases the loss of circulation depends on the integrated effects of the Lorentz force, with the patch cases leading to significantly greater circulation loss. For the case of the elliptical vortex the loss of circulation depends on the total area swept out by the rotating vortex and so this leads to more efficient circulation loss than for a circular vortex.
We consider the induction of magnetic field in flows of electrically conducting fluid at low magnetic Prandtl number and large kinetic Reynolds number. Using the separation between the magnetic and kinetic diffusive lengthscales, we propose a new numerical approach. The coupled magnetic and fluid equations are solved using a mixed scheme, where the magnetic field fluctuations are fully resolved and the velocity fluctuations at small scale are modelled using a Large Eddy Simulation (LES) scheme. We study the response of a forced Taylor-Green flow to an externally applied field: tology of the mean induction and time fluctuations at fixed locations. The results are in remarkable agreement with existing experimental data; a global $1/f$ behavior at long times is also evidenced.
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions.In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow the generation of a net toroidal flux and magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1 < Pm < 10, and that the saturation level is independent of Pm. In the vertical field runs strong mean-field dynamo develops and helps to sustain the MRI.
Magnetohydrodynamical (MHD) dynamos emerge in many different astrophysical situations where turbulence is present, but the interaction between large-scale (LSD) and small-scale dynamos (SSD) is not fully understood. We performed a systematic study of turbulent dynamos driven by isotropic forcing in isothermal MHD with magnetic Prandtl number of unity, focusing on the exponential growth stage. Both helical and non-helical forcing was employed to separate the effects of LSD and SSD in a periodic domain. Reynolds numbers (Rm) up to $approx 250$ were examined and multiple resolutions used for convergence checks. We ran our simulations with the Astaroth code, designed to accelerate 3D stencil computations on graphics processing units (GPUs) and to employ multiple GPUs with peer-to-peer communication. We observed a speedup of $approx 35$ in single-node performance compared to the widely used multi-CPU MHD solver Pencil Code. We estimated the growth rates both from the averaged magnetic fields and their power spectra. At low Rm, LSD growth dominates, but at high Rm SSD appears to dominate in both helically and non-helically forced cases. Pure SSD growth rates follow a logarithmic scaling as a function of Rm. Probability density functions of the magnetic field from the growth stage exhibit SSD behaviour in helically forced cases even at intermediate Rm. We estimated mean-field turbulence transport coefficients using closures like the second-order correlation approximation (SOCA). They yield growth rates similar to the directly measured ones and provide evidence of $alpha$ quenching. Our results are consistent with the SSD inhibiting the growth of the LSD at moderate Rm, while the dynamo growth is enhanced at higher Rm.
Using direct numerical simulations, we study the statistical properties of reversals in two-dimensional Rayleigh-Benard convection for infinite Prandtl number. We find that the large-scale circulation reverses irregularly, with the waiting time between two consecutive genuine reversals exhibiting a Poisson distribution on long time scales, while the interval between successive crossings on short time scales shows a power law distribution. We observe that the vertical velocities near the sidewall and at the center show different statistical properties. The velocity near the sidewall shows a longer autocorrelation and $1/f^2$ power spectrum for a wide range of frequencies, compared to shorter autocorrelation and a narrower scaling range for the velocity at the center. The probability distribution of the velocity near the sidewall is bimodal, indicating a reversing velocity field. We also find that the dominant Fourier modes capture the dynamics at the sidewall and at the center very well. Moreover, we show a signature of weak intermittency in the fluctuations of velocity near the sidewall by computing temporal structure functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا