The equivalence principle is a perennial subject of controversy, especially in connection with radiation by a uniformly accelerated classical charge, or a freely falling charge observed by a supported detector. Recently, related issues have been raised in connection with the Unruh radiation associated with accelerated detectors (including two-level atoms and resonant cavities). A third type of system, very easy to analyze because of conformal invariance, is a two-dimensional scalar field interacting with perfectly reflecting boundaries (mirrors). After reviewing the issues for atoms and cavities, we investigate a stationary mirror from the point of view of an accelerated detector in Rindler space. In keeping with the conclusions of earlier authors about the electromagnetic problem, we find that a radiative effect is indeed observed; from an inertial point of view, the process arises from a collision of the negative vacuum energy of Rindler space with the mirror. There is a qualitative symmetry under interchange of accelerated and inertial subsystems (a vindication of the equivalence principle), but it hinges on the accelerated detectors being initially in its own Rindler vacuum. This observation is consistent with the recent work on the Unruh problem.