We study quantum geometry of Nakajima quiver varieties of two different types - framed A-type quivers and ADHM quivers. While these spaces look completely different we find a surprising connection between equivariant K-theories thereof with a nontrivial match between their equivariant parameters. In particular, we demonstrate that quantum equivariant K-theory of $A_n$ quiver varieties in a certain $ntoinfty$ limit reproduces equivariant K-theory of the Hilbert scheme of points on $mathbb{C}^2$. We analyze the correspondence from the point of view of enumerative geometry, representation theory and integrable systems. We also propose a conjecture which relates spectra of quantum multiplication operators in K-theory of the ADHM moduli spaces with the solution of the elliptic Ruijsenaars-Schneider model.