Do you want to publish a course? Click here

The HI content of dark matter halos at $zapprox 0$ from ALFALFA

55   0   0.0 ( 0 )
 Added by Andrej Obuljen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We combine information from the clustering of HI galaxies in the 100% data release of the Arecibo Legacy Fast ALFA survey (ALFALFA), and from the HI content of optically-selected galaxy groups found in the Sloan Digital Sky Survey (SDSS) to constrain the relation between halo mass $M_h$ and its average total HI mass content $M_{rm HI}$. We model the abundance and clustering of neutral hydrogen through a halo-model-based approach, parametrizing the $M_{rm HI}(M_h)$ relation as a power law with an exponential mass cutoff. To break the degeneracy between the amplitude and low-mass cutoff of the $M_{rm HI}(M_h)$ relation, we also include a recent measurement of the cosmic HI abundance from the $alpha$.100 sample. We find that all datasets are consistent with a power-law index $alpha=0.44pm 0.08$ and a cutoff halo mass $log_{10}M_{rm min}/(h^{-1}M_odot)=11.27^{+0.24}_{-0.30}$. We compare these results with predictions from state-of-the-art magneto-hydrodynamical simulations, and find both to be in good qualitative agreement, although the data favours a significantly larger cutoff mass that is consistent with the higher cosmic HI abundance found in simulations. Both data and simulations seem to predict a similar value for the HI bias ($b_{rm HI}=0.875pm0.022$) and shot-noise power ($P_{rm SN}=92^{+20}_{-18},[h^{-1}{rm Mpc}]^3$) at redshift $z=0$.



rate research

Read More

Measurements of the total amount of stars locked up in galaxies as a function of host halo mass contain key clues about the efficiency of processes that regulate star formation. We derive the total stellar mass fraction f_star as a function of halo mass M500c from z=0.2 to z=1 using two complementary methods. First, we derive f_star using a statistical Halo Occupation Distribution model jointly constrained by data from lensing, clustering, and the stellar mass function. This method enables us to probe f_star over a much wider halo mass range than with group or cluster catalogs. Second, we derive f_star at group scales using a COSMOS X-ray group catalog and we show that the two methods agree to within 30%. We quantify the systematic uncertainty on f_star using abundance matching methods and we show that the statistical uncertainty on f_star (~10%) is dwarfed by systematic uncertainties associated with stellar mass measurements (~45% excluding IMF uncertainties). Assuming a Chabrier IMF, we find 0.012<f_star<0.025 at M500c=10^13 Msun and 0.0057<f_star<0.015 at M500c=10^14 Msun. These values are significantly lower than previously published estimates. We investigate the cause of this difference and find that previous work has overestimated f_star due to a combination of inaccurate stellar mass estimators and/or because they have assumed that all galaxies in groups are early type galaxies with a constant mass-to-light ratio. Contrary to previous claims, our results suggest that the mean value of f_star is always significantly lower than f_gas for halos above 10^13 Msun. Combining our results with recently published gas mas fractions, we find a shortfall in f_star+f_gas at R500c compared to the cosmic mean. This shortfall varies with halo mass and becomes larger towards lower halos masses.
We use a stacking technique to measure the average HI content of a volume-limited sample of 1871 AGN host galaxies from a parent sample of galaxies selected from the SDSS and GALEX imaging surveys with stellar masses greater than 10^10 M_sun and redshifts in the range 0.025<z<0.05. HI data are available from the Arecibo Legacy Fast ALFA (ALFALFA) survey. In previous work, we found that the HI gas fraction in galaxies correlates most strongly with the combination of optical/UV colour and stellar surface mass density. We therefore build a control sample of non-AGN matched to the AGN hosts in these two properties. We study trends in HI gas mass fraction (M(HI)/M_*), where M_* is the stellar mass) as a function of black hole accretion rate indicator L[OIII]/M(BH). We find no significant difference in HI content between AGN and control samples at all values of black hole accretion rate probed by the galaxies in our sample. This indicates that AGN do not influence the large-scale gaseous properties of galaxies in the local Universe. We have studied the variation in HI mass fraction with black hole accretion rate in the blue and red galaxy populations. In the blue population, the HI gas fraction is independent of accretion rate, indicating that accretion is not sensitive to the properties of the interstellar medium of the galaxy on large scales. However, in the red population accretion rate and gas fraction do correlate. The measured gas fractions in this population are not too different from the ones expected from a stellar mass loss origin, implying that the fuel supply in the red AGN population could be a mixture of mass loss from stars and gas present in disks.
We present a robust method to constrain average galaxy star formation rates, star formation histories, and the intracluster light as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates, and cosmic star formation rates from z=0 to z=8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, star formation rates, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z=8. We also provide new compilations of cosmic and specific star formation rates; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 10^12 Msun are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for star formation histories that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the star formation history of galaxies into a self-consistent framework based on the modern understanding of structure formation in LCDM. Constraints on the stellar mass-halo mass relationship and star formation rates are available for download at http://www.peterbehroozi.com/data.html .
We present the analysis of the HI content of a sample of early-type galaxies (ETGs) in low-density environments (LDEs) using the data set provided by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We compare their properties to the sample in the Virgo cluster that we studied in a previous paper (di Serego Alighieri et al. 2007, Paper I). We have selected a sample of 62 nearby ETGs (V< 3000 km/s) in an area of the sky where the ALFALFA data are already available (8h<RA<16h, 4 deg<DEC<16deg), avoiding the region of the Virgo cluster. Among these, 39 have absolute B magnitudes fainter than M_B = -17. Fifteen out of 62 galaxies have been firmly detected with ALFALFA (sim 25%). Five additional galaxies show a weaker HI emission (S/N sim 4) and they will need deeper observations to be confirmed. All together, our analysis doubles the number of known gas-rich ETGs in this area. The HI detection rate is 44% in luminous ETGs (M_B < -17) and 13% in dwarf ETGs (M_B > -17). In both cases it is 10 times higher than that of the Virgo cluster. The presence of gas can be related to a recent star formation activity: 60% of all ETGs with HI have optical emission line ratios typical of star-forming galaxies and blue colours suggesting the presence of young stellar populations, especially in the dwarf subsample. We show that the HI detection rate of ETGs depends both on the environment and mass. The fraction of early-type systems with neutral hydrogen is higher in more massive objects when compared to early-type dwarfs. The ETGs in LDEs seem to have more heterogeneous properties than their Virgo cluster counterparts, since they are able to retain a cold interstellar gas component and to support star formation activity even at recent epochs.
We report results from a study of the HI content and stellar properties of nearby galaxies detected by the Arecibo Legacy Fast ALFA blind 21-cm line survey and the Sloan Digital Sky Survey in two declination strips covering a total area of 9 hr X 16 deg. Our analysis seeks to assemble a control sample of galaxies suitable for providing absolute measures of the HI content of gaseous objects. From a database of ~15,000 HI detections, we have assembled three samples of gas-rich galaxies expected to show little or no evidence of interaction with their surroundings that could provide adequate HI standards. The most reliable results are obtained with a sample of 5647 sources found in low density environments, as defined by a nearest neighbor approach. The other two samples contain several hundred relatively isolated galaxies each, as determined from standard isolation algorithms. We find that isolated objects are not particularly gas-rich compared to their low-density-environment counterparts, while they suffer from selection bias and span a smaller dynamic range. All this makes them less suitable for defining a reference for HI content. We have explored the optical morphology of gaseous galaxies in quiet environments finding that, within the volume surveyed, the vast majority of them display unequivocal late-type galaxy features. In contrast, bona fide gas-rich early-type systems account only for a negligible fraction of the 21-cm detections. We argue that HI emission provides the most reliable way to determine the morphological population to which a galaxy belongs. We have also observed that the color distribution of flux-limited samples of optically-selected field HI emitters does not vary significantly with increasing distance, while that of non-detections becomes notably redder. This result suggests that the colors and HI masses of gas-rich galaxies cannot be very closely related.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا