Do you want to publish a course? Click here

Greening Internet of Things for Smart Everythings with A Green-Environment Life: A Survey and Future Prospects

68   0   0.0 ( 0 )
 Added by Saeed Alsamhi Dr
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Tremendous technology development in the field of Internet of Things (IoT) has changed the way we work and live. Although the numerous advantages of IoT are enriching our society, it should be reminded that the IoT also consumes energy, embraces toxic pollution and E-waste. These place new stress on the environments and smart world. In order to increase the benefits and reduce the harm of IoT, there is an increasing desire to move toward green IoT. Green IoT is seen as the future of IoT that is environmentally friendly. To achieve that, it is necessary to put a lot of measures to reduce carbon footprint, conserve fewer resources, and promote efficient techniques for energy usage. It is the reason for moving towards green IoT, where the machines, communications, sensors, clouds, and internet are alongside energy efficiency and reducing carbon emission. This paper presents a thorough survey of the current on-going research work and potential technologies of green IoT with an intention to provide some clues for future green IoT research.



rate research

Read More

The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.
With an enormous range of applications, Internet of Things (IoT) has magnetized industries and academicians from everywhere. IoT facilitates operations through ubiquitous connectivity by providing Internet access to all the devices with computing capabilities. With the evolution of wireless infrastructure, the focus from simple IoT has been shifted to smart, connected and mobile IoT (M-IoT) devices and platforms, which can enable low-complexity, low-cost and efficient computing through sensors, machines, and even crowdsourcing. All these devices can be grouped under a common term of M-IoT. Even though the positive impact on applications has been tremendous, security, privacy and trust are still the major concerns for such networks and an insufficient enforcement of these requirements introduces non-negligible threats to M-IoT devices and platforms. Thus, it is important to understand the range of solutions which are available for providing a secure, privacy-compliant, and trustworthy mechanism for M-IoT. There is no direct survey available, which focuses on security, privacy, trust, secure protocols, physical layer security and handover protections in M-IoT. This paper covers such requisites and presents comparisons of state-the-art solutions for IoT which are applicable to security, privacy, and trust in smart and connected M-IoT networks. Apart from these, various challenges, applications, advantages, technologies, standards, open issues, and roadmap for security, privacy and trust are also discussed in this paper.
The integration of sensors and communication technology in power systems, known as the smart grid, is an emerging topic in science and technology. One of the critical issues in the smart grid is its increased vulnerability to cyber threats. As such, various types of threats and defense mechanisms are proposed in literature. This paper offers a bibliometric survey of research papers focused on the security aspects of Internet of Things (IoT) aided smart grids. To the best of the authors knowledge, this is the very first bibliometric survey paper in this specific field. A bibliometric analysis of all journal articles is performed and the findings are sorted by dates, authorship, and key concepts. Furthermore, this paper also summarizes the types of cyber threats facing the smart grid, the various security mechanisms proposed in literature, as well as the research gaps in the field of smart grid security.
Natural disasters such as floods and earthquakes immensely impact the telecommunication network infrastructure, leading to the malfunctioning and interruption of wireless services. Consequently, the user devices under the disaster zone are unable to access the cellular base stations. Wireless coverage on an unmanned aerial vehicle (UAV) is considered for providing coverage service to ground user devices in disaster events. This work evaluated the efficient performance of wireless coverage services of UAVs to provide the internet to fly things to help recover the communications link in a natural disaster in multi environments. The results demonstrate the line of sight, nonline of sight, path loss, and coverage probability for the radio propagation environment scenario. Therefore, the path loss and coverage probability are affected by the user devices elevation angle and distance in the multi-environment system. The user positions optimum user device distance and elevation angle are also investigated to improve the coverage probability, which could be especially useful for the UAV deployment design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا