Do you want to publish a course? Click here

Granular bed consolidation, creep and armoring under subcritical fluid flow

144   0   0.0 ( 0 )
 Added by Arshad Kudrolli
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that a freshly sedimented granular bed settles and creeps forward over extended periods of time under an applied hydrodynamic shear stress, which is below the critical value for bedload transport. The rearrangements are found to last over a time scale which is millions of times the sedimentation time scale of a grain in the fluid. Compaction occurs uniformly throughout the bed, but creep is observed to decay exponentially with depth, and decreases over time. The granular volume fraction in the bed is found to increase logarithmically, saturating at the random close packing value $phi_{rcp} approx 0.64$, while the surface roughness is observed to remain essentially unchanged. We demonstrate that an increasingly higher shear stress is required to erode the bed after a sub-critical shear is applied which results in an increase in its volume fraction. Thus, we find that bed armoring occurs due to a deep shear-induced relaxation of the bed towards the volume fraction associated with the glass transition.



rate research

Read More

Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.
98 - H. Caps , N. Vandewalle 2002
An experimental study of a granular surface submitted to a circular fluid motion is presented. The appearance of an instability along the sand-water interface is observed beyond a critical radius $r_c$. This creates ripples with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as a function of the rotation speed $omega$ of the flow and as a function of the height of water $h$ above the surface. The study of $r_c$ as a function of $h$, $omega$ and $r$ parameters is reported. Thereafter, $r_c$ is shown to depend on the rotation speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases and is proportional to the radial distance $r$. The azimuthal angle az of the spiral arms is studied. It is found that az scales with $homega r$. This lead to the conclusion that az depends on the fluid momentum. Comparison with experiments performed with fluids allows us to state that the spiral patterns are not the signature of an instability of the boundary layer.
We perform three-dimensional simulations of a granular jet impact for both frictional and frictionless grains. Small shear stress observed in the experiment[X. Cheng et al., Phys. Rev. Lett. 99, 188001 (2007) ] is reproduced through our simulation. However, the fluid state after the impact is far from a perfect fluid, and thus, similarity between granular jets and quark gluon plasma is superficial, because the observed viscosity is finite and its value is consistent with the prediction of the kinetic theory.
138 - Evgeniy Khain 2007
We consider dense rapid shear flow of inelastically colliding hard disks. Navier-Stokes granular hydrodynamics is applied accounting for the recent finding cite{Luding,Khain} that shear viscosity diverges at a lower density than the rest of constitutive relations. New interpolation formulas for constitutive relations between dilute and dense cases are proposed and justified in molecular dynamics (MD) simulations. A linear stability analysis of the uniform shear flow is performed and the full phase diagram is presented. It is shown that when the inelasticity of particle collision becomes large enough, the uniform sheared flow gives way to a two-phase flow, where a dense solid-like striped cluster is surrounded by two fluid layers. The results of the analysis are verified in event-driven MD simulations, and a good agreement is observed.
Using high-speed video and magnetic resonance imaging (MRI) we study the motion of a large sphere in a vertically vibrated bed of smaller grains. As previously reported we find a non-monotonic density dependence of the rise and sink time of the large sphere. We find that this density dependence is solely due to air drag. We investigate in detail how the motion of the intruder sphere is influenced by size of the background particles, initial vertical position in the bed, ambient pressure and convection. We explain our results in the framework of a simple model and find quantitative agreement in key aspects with numerical simulations to the model equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا