Do you want to publish a course? Click here

Detection of magnetic fields in chemically peculiar stars observed with the K2 space mission

90   0   0.0 ( 0 )
 Added by Bram Buysschaert
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of an observational study aimed at searching for magnetic pulsating hot stars suitable for magneto-asteroseismology. A sample of sixteen chemically peculiar stars was selected and analysed using both high-resolution spectropolarimetry with ESPaDOnS and K2 high-precision space photometry. For all stars, we derive the effective temperature, surface gravity, rotational and non-rotational line broadening from our spectropolarimetric data. High-quality K2 light curves were obtained for thirteen of the sixteen stars and revealed rotational modulation, providing accurate rotation periods. Two stars show evidence for roAp pulsations, and one star shows signatures of internal gravity waves or unresolved g-mode pulsations. We confirm the presence of a large-scale magnetic field for eleven of the studied stars, of which nine are first detections. Further, we report one marginal detection and four non-detections. Two of the stars with a non-detected magnetic field show rotational modulation due to surface abundance inhomogeneities in the K2 light curve, and we confirm that the other two are chemically peculiar. Thus, these five stars likely host a weak (undetected) large-scale magnetic field.



rate research

Read More

The physics of magnetic hot stars and how a large-scale magnetic field affects their interior properties is largely unknown. Few studies have combined high-quality observations and modelling of magnetic pulsating stars, known as magneto-asteroseismology, primarily because of the dearth of detected pulsations in stars with a confirmed and well-characterised large-scale magnetic field. We aim to characterise observational signatures of rotation and pulsation in chemically peculiar candidate magnetic stars using photometry from the K2 space mission. Thus, we identify the best candidate targets for ground-based, optical spectropolarimetric follow-up observations to confirm the presence of a large-scale magnetic field. We employed customised reduction and detrending tools to process the K2 photometry into optimised light curves for a variability analysis. We searched for the periodic photometric signatures of rotational modulation caused by surface abundance inhomogeneities in 56 chemically peculiar A and B stars. Furthermore, we searched for intrinsic variability caused by pulsations (coherent or otherwise) in the amplitude spectra of these stars. The rotation periods of 38 chemically peculiar stars are determined, 16 of which are the first determination of the rotation period in the literature. We confirm the discovery of high-overtone roAp pulsation modes in HD 177765 and find an additional 3 Ap and Bp stars that show evidence of high-overtone pressure modes found in roAp stars in the form of possible Nyquist alias frequencies in their amplitude spectra. Furthermore, we find 6 chemically peculiar stars that show evidence of intrinsic variability caused by gravity or pressure pulsation modes. The discovery of pulsations in a non-negligible fraction of chemically peculiar stars make these stars high-priority targets for spectropolarimetric campaigns.
The number of known variable stars has increased by several magnitudes over the last decade, and automated classification routines are becoming increasingly important to cope with this development. Here we show that the upside-down CBH variables, which were proposed as a potentially new class of variable stars by Heinze et al. (2018) in the ATLAS First Catalogue of Variable Stars, are, at least to a high percentage, made up of alpha2 Canum Venaticorum (ACV) variables - that is, photometrically variable magnetic chemically peculiar (CP2/He-peculiar) stars - with distinct double-wave light curves. Using suitable selection criteria, we identified 264 candidate ACV variables in the ATLAS variable star catalogue. 62 of these objects were spectroscopically confirmed with spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (all new discoveries except for nine stars) and classified on the MK system. The other 202 stars are here presented as ACV star candidates that require spectroscopic confirmation. The vast majority of our sample of stars are main-sequence objects. Derived masses range from 1.4M(Sun) to 5M(Sun), with half our sample stars being situated in the range from 2 M(Sun) to 2.4 M(Sun), in good agreement with the spectral classifications. Most stars belong to the thin or thick disk; four objects, however, classify as members of the halo population. With a peak magnitude distribution at around 14th magnitude, the here presented stars are situated at the faint end of the known Galactic mCP star population. Our study highlights the need to consider rare variability classes, like ACV variables, in automated classification routines.
Since the discovery of the spectral peculiarities of their prototype alpha2 Canum Venaticorum in 1897, the so-called ACV variables, which are comprised of several groups of chemically peculiar stars of the upper main sequence, have been the target of numerous photometric and spectroscopic studies. Especially for the brighter ACV variables, continuous observations over about a century are available, which are important to study long-term effects such as period changes or magnetic cycles in these objects. The present work presents an analysis of 165 Ap/CP2 and He-weak/CP4 stars using light curves obtained by the Solar Mass Ejection Imager (SMEI) between the years 2003 and 2011. These data fill an important gap in observations for bright ACV variables between the Hipparcos and TESS satellite missions. Using specifically tailored data treatment and period search approaches, we find variability in the accuracy limit of the employed data in 84 objects. The derived periods are in excellent agreement with the literature; for one star, the here presented solution represents the first published period. We discuss the apparently constant stars and the corresponding level of non-variability. From an investigation of our target star sample in the Hertzsprung-Russell diagram, we deduce ages between 100 Myr and 1 Gyr for the majority of our sample stars. Our results support that the variable CP2/4 stars are in a more advanced evolutionary state and that He and Si peculiarities, preferentially found in the hotter, and thus more massive, CP stars, produce larger spots or spots of higher contrast.
Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar rotation. The present work is aimed at identifying new mCP stars using spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were selected by searching LAMOST DR4 spectra for the presence of the characteristic 5200A flux depression. Spectral classification was carried out with a modified version of the MKCLASS code and the accuracy of the classifications was estimated by comparison with results from manual classification and the literature. Using parallax data and photometry from Gaia DR2, we investigated the space distribution of our sample stars and their properties in the colour-magnitude diagram. Our final sample consists of 1002 mCP stars, most of which are new discoveries (only 59 previously known). Traditional mCP star peculiarities have been identified in all but 36 stars, highlighting the efficiency of the codes peculiarity identification capabilities. The derived temperature and peculiarity types are in agreement with manually derived classifications and the literature. Our sample stars are between 100 Myr and 1 Gyr old, with the majority having masses between 2M(Sun) and 3M(Sun). Our results could be considered as strong evidence for an inhomogeneous age distribution among low-mass (M < 3M(Sun)) mCP stars. We identified several astrophysically interesting objects: two mCP stars have distances and kinematical properties in agreement with halo stars; an eclipsing binary system hosting an mCP star component; and an SB2 system likely comprising of an mCP star and a supergiant component.
In this paper we present a new catalogue of Chemically Peculiar (CP) stars obtained by compiling publications in which abundances of metals are provided. Our catalogue includes 428 stars for which the data were obtained through spectroscopic observations. Most of them (416) are AmFm, HgMn and ApBp stars. We have used this compilation to proceed to a statistical overview of the abundance anomalies versus the physical parameters of the stars. The Spearmans rank correlation test has been applied, and a significant number of correlations of abundance peculiarities with respect to effective temperature, surface gravity and rotation velocity have been found. Four interesting cases are discussed in details: the Mn peculiarities in HgMn stars, the Ca correlation with respect to effective temperature in AmFm stars, the case of helium and iron in ApBp stars. Furthermore, we checked for ApBp stars using Anderson-Darling test wether the belonging to a multiple system is a determinant parameter or not for abundance peculiarities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا