Do you want to publish a course? Click here

Thermal decomposition and chemical vapor deposition: a comparative study of multi-layer growth of graphene on SiC(000-1)

336   0   0.0 ( 0 )
 Added by Domenica Convertino
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work presents a comparison of the structural, chemical and electronic properties of multi-layer graphene grown on SiC(000-1) by using two different growth approaches: thermal decomposition and chemical vapor deposition (CVD). The topography of the samples was investigated by using atomic force microscopy (AFM), and scanning electron microscopy (SEM) was performed to examine the sample on a large scale. Raman spectroscopy was used to assess the crystallinity and electronic behavior of the multi-layer graphene and to estimate its thickness in a non-invasive way. While the crystallinity of the samples obtained with the two different approaches is comparable, our results indicate that the CVD method allows for a better thickness control of the grown graphene.



rate research

Read More

We have analyzed by Scanning Tunnelling Microscopy (STM) thin films made of few (3-5) graphene layers grown on the C terminated face of 6H-SiC in order to identify the nature of the azimuthal disorder reported in this material. We observe superstructures which are interpreted as Moire patterns due to a misorientation angle between consecutive layers. The presence of stacking faults is expected to lead to electronic properties reminiscent of single layer graphene even for multilayer samples. Our results indicate that this apparent electronic decoupling of the layers can show up in STM data.
Rhombohedral-stacked few-layer graphene (FLG) has been receiving an ever-increasing attention owing to its peculiar electronic properties that could lead to enticing phenomena such as superconductivity and magnetic ordering. Up to now, experimental studies on such material have been mainly limited by the difficulty in isolating it in thickness exceeding 3 atomic layers with device-compatible size. In this work, rhombohedral graphene with thickness up to 9 layers and areas up to ~50 micrometers square is grown via chemical vapor deposition (CVD) on suspended Cu foils and transferred onto target substrates via etch-free delamination. The domains of rhombohedral FLG are identified by Raman spectroscopy and are found to alternate with domains of Bernal-stacked FLG within the same crystal in a stripe-like configuration. A combined analysis of micro-Raman mapping, atomic force microscopy and optical microscopy indicates that the formation of rhombohedral-stacked FLG is strongly correlated to the copper substrate morphology. Cu step bunching results in bending of FLG and interlayer displacement along preferential crystallographic orientations, as determined experimentally by electron microscopy, thus inducing the stripe-like domains. The growth and transfer of rhombohedral FLG with the reported thickness and size shall facilitate the observation of predicted unconventional physics and ultimately add to its technological relevance.
Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 {deg}C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms intercalate at this high temperature, and during the deposition process, through defects of the molybdenum disulfide surface such as steps and wrinkles. Post growth atomic force microscopy images reveal that circular flat graphene islands have grown at a high yield. They consist of two graphene layers stacked on top of each other with a total thickness of 0.74 nm. Our results demonstrate direct, simple and high yield growth of graphene/molybdenum disulfide heterostructures, which can be of high importance in future nanoelectronic and optoelectronic applications.
We investigate electronic band-structure images in reciprocal space of few layer graphene epitaxially grown on SiC(000-1). In addition to the observation of commensurate rotation angles of the graphene layers, the k-space images recorded near the Fermi edge highlight structures originating from diffraction of the Dirac cones due to the relative rotation of adjacent layers. The 21.9{deg} and 27{deg} rotation angles between two sheets of graphene are responsible for a periodic pattern that can be described with a superlattice unit cells. The superlattice generates replicas of Dirac cones with smaller wave vectors, due to a Brillouin zone folding.
132 - I. Deretzis , A. La Magna 2011
We perform density functional theory calculations for the determination of the structural and electronic properties of epitaxial graphene on 4H-SiC(000$bar{1}$). Using commensurate supercells that minimize non-physical stresses we show that, in contrast with Si-face epitaxial films, the first graphene layer that forms on the C-face of SiC is purely metallic with its $pi$-bands partially preserved. Typical free-standing characteristics are fully recovered with a second graphene layer. We moreover discuss on the magnetic properties of the interface and the absence of Fermi-level pinning effects that could allow for a plausible device operation starting from the off-state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا