Do you want to publish a course? Click here

Studying galaxy troughs and ridges using Weak Gravitational Lensing with the Kilo-Degree Survey

59   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study projected underdensities in the cosmic galaxy density field known as troughs, and their overdense counterparts, which we call ridges. We identify these regions using a bright sample of foreground galaxies from the photometric Kilo-Degree Survey (KiDS), specifically selected to mimic the spectroscopic Galaxy And Mass Assembly survey (GAMA). Using background galaxies from KiDS, we measure the weak gravitational lensing profiles of the troughs/ridges. We quantify the amplitude of their lensing strength $A$ as a function of galaxy density percentile rank $P$ and galaxy overdensity $delta$, and find that the skewness in the galaxy density distribution is reflected in the total mass distribution measured by weak lensing. We interpret our results using the mock galaxy catalogue from the Marenostrum Institut de Ci`encies de lEspai (MICE) simulation, and find a good agreement with our observations. Using signal-to-noise weights derived from the Scinet LIghtCone Simulations (SLICS) mock catalogue we optimally stack the lensing signal of KiDS troughs with an angular radius $theta_A$ = {5,10,15,20} arcmin, resulting in {16.8,14.9,10.13,7.55} $sigma$ detections. Finally, we select troughs using a volume-limited sample of galaxies, split into two redshift bins between 0.1 < z < 0.3. For troughs/ridges with transverse comoving radius $R_A$ = 1.9 Mpc/h, we find no significant difference in the comoving Excess Surface Density as a function of $P$ and $delta$ between the low- and high-redshift sample. Using the MICE and SLICS mocks we predict that trough and ridge evolution could be detected with gravitational lensing using deeper and wider lensing surveys, such as those from the Large Synoptic Survey Telescope and Euclid.



rate research

Read More

We use the overlap between multiband photometry of the Kilo-Degree Survey (KiDS) and spectroscopic data based on the Sloan Digital Sky Survey (SDSS) and Galaxy And Mass Assembly (GAMA) to infer the colour-magnitude relation of red-sequence galaxies. We then use this inferred relation to select luminous red galaxies (LRGs) in the redshift range of $0.1<z<0.7$ over the entire KiDS Data Release 3 footprint. We construct two samples of galaxies with different constant comoving densities and different luminosity thresholds. The selected red galaxies have photometric redshifts with typical photo-z errors of $sigma_z sim 0.014 (1+z)$ that are nearly uniform with respect to observational systematics. This makes them an ideal set of galaxies for lensing and clustering studies. As an example, we use the KiDS-450 cosmic shear catalogue to measure the mean tangential shear signal around the selected LRGs. We detect a significant weak lensing signal for lenses out to $z sim 0.7$.
The Kilo Degree Survey (KiDS) is a 1500 square degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST). A suite of data products will be delivered to the European Southern Observatory (ESO) and the community by the KiDS survey team. Spread over Europe, the KiDS team uses Astro-WISE to collaborate efficiently and pool hardware resources. In Astro-WISE the team shares, calibrates and archives all survey data. The data-centric architectural design realizes a dynamic live archive in which new KiDS survey products of improved quality can be shared with the team and eventually the full astronomical community in a flexible and controllable manner.
In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify clusters as over-densities in the distribution of galaxies using their positions on the sky, magnitudes, and photometric redshifts. The contamination and completeness of the cluster catalog are derived using mock catalogs based on the data themselves. The optimal signal to noise threshold for the cluster detection is obtained by randomizing the galaxy positions and selecting the value that produces a contamination of less than 20%. Starting from a subset of clusters detected with high significance at low redshifts, we shift them to higher redshifts to estimate the completeness as a function of redshift: the average completeness is ~ 85%. An estimate of the mass of the clusters is derived using the richness as a proxy. We obtained 1858 candidate clusters with redshift 0 < z_c < 0.7 and mass 13.5 < log(M500/Msun) < 15 in an area of 114 sq. degrees (KiDS ESO-DR2). A comparison with publicly available Sloan Digital Sky Survey (SDSS)-based cluster catalogs shows that we match more than 50% of the clusters (77% in the case of the redMaPPer catalog). We also cross-matched our cluster catalog with the Abell clusters, and clusters found by XMM and in the Planck-SZ survey; however, only a small number of them lie inside the KiDS area currently available.
We present the results of our first year of quasar search in the on-going ESO public Kilo Degree Survey (KiDS) and VISTA Kilo-Degree Infrared Galaxy (VIKING) surveys. These surveys are among the deeper wide-field surveys that can be used to uncovered large numbers of z~6 quasars. This allows us to probe a more common population of z~6 quasars that is fainter than the well-studied quasars from the main Sloan Digital Sky Survey. From this first set of combined survey catalogues covering ~250 deg^2 we selected point sources down to Z_AB=22 that had a very red i-Z (i-Z>2.2) colour. After follow-up imaging and spectroscopy, we discovered four new quasars in the redshift range 5.8<z<6.0. The absolute magnitudes at a rest-frame wavelength of 1450 A are between -26.6 < M_1450 < -24.4, confirming that we can find quasars fainter than M^*, which at z=6 has been estimated to be between M^*=-25.1 and M^*=-27.6. The discovery of 4 quasars in 250 deg^2 of survey data is consistent with predictions based on the z~6 quasar luminosity function. We discuss various ways to push the candidate selection to fainter magnitudes and we expect to find about 30 new quasars down to an absolute magnitude of M_1450=-24. Studying this homogeneously selected faint quasar population will be important to gain insight into the onset of the co-evolution of the black holes and their stellar hosts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا