Do you want to publish a course? Click here

Nonperturbatively-renormalized glue momentum fraction at physical pion mass from Lattice QCD

237   0   0.0 ( 0 )
 Added by Yibo Yang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We present the first nonperturbatively-renormalized determination of the glue momentum fraction $langle x rangle_g$ in the nucleon, based on lattice-QCD simulations at physical pion mass using the cluster-decomposition error reduction (CDER) technique. We provide the first practical strategy to renormalize the glue energy-momentum tensor (EMT) nonperturbatively in the RI/MOM scheme, and convert the results to the $overline{textrm{MS}}$ scheme with 1-loop matching. The simulation results show that the CDER technique can reduce the statistical uncertainty of its renormalization constant by a factor of ${cal O}$(300) in calculations using typical state-of-the-art lattice volume, and the nonperturbatively-renormalized $langle x rangle_g$ is shown to be independent of the lattice definitions of the glue EMT up to discretization errors. We determine the renormalized $langle x rangle_g^{overline{textrm{MS}}}(2textrm{ GeV})$ to be 0.47(4)(11) at physical pion mass, which is consistent with the experimentally-determined value.



rate research

Read More

We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distributions using clover valence fermions on 2+1+1-flavor (up/down, strange, charm) HISQ-lattice configurations with boosted proton momenta as large as 3.0~GeV. The relevant lattice matrix elements are nonperturbatively renormalized in regularization-independent momentum-subtraction (RI/MOM) scheme and systematically matched to the physical transversity distribution. With high statistics, large proton momenta and meticulous control of excited-state contamination, we provide the best theoretical prediction for the large-$x$ isovector quark transversity distribution, with better precision than the most recent global analyses of experimental data. Our result also shows that the sea quark asymmetry in the proton transversity distribution is consistent with zero, which has been assumed in all current global analyses.
138 - Shigemi Ohta IPNS 2011
Current status of nucleon structure calculations with joint RBC and UKQCD 2+1-flavor dynamical domain-wall fermions (DWF) lattice QCD is reported: Two ensembles with pion mass of about (m_pi=170) MeV and 250 MeV are used. The lattice cutoff is set at about 1.4 GeV, allowing a large spatial volume of about (L=4.6) fm across while maintaining a sufficiently small residual breaking of chiral symmetry with the dislocation-suppressing-determinant-ratio (DSDR) gauge action. We calculate all the isovector form factors and some low moments of isovector structure functions. We confirm the finite-size effect in isovector axialvector-current form factors, in particular the deficit in the axial charge and its scaling in terms of (m_pi L), that we reported from our earlier calculation at heavier pion masses.
We report the first Lattice QCD calculation using the almost physical pion mass mpi=149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magnetic moment, and the quark momentum fraction. The key to this success is the combination of using a nearly physical pion mass and excluding the contributions of excited states. An analogous calculation of the nucleon axial charge governing beta decay has inconsistencies indicating a source of bias at low pion masses not present for the other observables and yields a result that disagrees with experiment.
We present lattice QCD calculations of nucleon electromagnetic form factors using pion masses $m_pi$ = 149, 202, and 254 MeV and an action with clover-improved Wilson quarks coupled to smeared gauge fields, as used by the Budapest-Marseille-Wuppertal collaboration. Particular attention is given to removal of the effects of excited state contamination by calculation at three source-sink separations and use of the summation and generalized pencil-of-function methods. The combination of calculation at the nearly physical mass $m_pi$ = 149 MeV in a large spatial volume ($m_pi L_s$ = 4.2) and removal of excited state effects yields agreement with experiment for the electric and magnetic form factors $G_E(Q^2)$ and $G_M(Q^2)$ up to $Q^2$ = 0.5 GeV$^2$.
We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice spacings $aapprox$ 0.116 and 0.093 fm. We use a wide range of source-sink separations - eight values ranging from roughly 0.4 to 1.4 fm on the coarse ensemble and three values from 0.9 to 1.5 fm on the fine ensemble - which allows us to perform an extensive study of excited-state effects using different analysis and fit strategies. To determine the renormalization factors, we use the nonperturbative Rome-Southampton approach and compare RI-MOM and RI-SMOM intermediate schemes to estimate the systematic uncertainties. Our final results are computed in the MS-bar scheme at scale 2 GeV. The tensor and axial charges have uncertainties of roughly 4%, $g_T=0.972(41)$ and $g_A=1.265(49)$. The resulting scalar charge, $g_S=0.927(303)$, has a much larger uncertainty due to a stronger dependence on the choice of intermediate renormalization scheme and on the lattice spacing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا