Do you want to publish a course? Click here

Towards a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops

89   0   0.0 ( 0 )
 Added by Harry Warren
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is widely believed that loops observed in the solar atmosphere trace out magnetic field lines. However, the degree to which magnetic field extrapolations yield field lines that actually do follow loops has yet to be studied systematically. In this paper we apply three different extrapolation techniques - a simple potential model, a NLFF model based on photospheric vector data, and a NLFF model based on forward fitting magnetic sources with vertical currents - to 15 active regions that span a wide range of magnetic conditions. We use a distance metric to assess how well each of these models is able to match field lines to the 12,202 loops traced in coronal images. These distances are typically 1-2. We also compute the misalignment angle between each traced loop and the local magnetic field vector, and find values of 5-12$^circ$. We find that the NLFF models generally outperform the potential extrapolation on these metrics, although the differences between the different extrapolations are relatively small. The methodology that we employ for this study suggests a number of ways that both the extrapolations and loop identification can be improved.



rate research

Read More

Here we report on the unique observation of flaring coronal loops at the solar limb using high resolution imaging spectropolarimetry from the Swedish 1-meter Solar Telescope. The vantage position, orientation and nature of the chromospheric material that filled the flare loops allowed us to determine their magnetic field with unprecedented accuracy using the weak-field approximation method. Our analysis reveals coronal magnetic field strengths as high as 350 Gauss at heights up to 25 Mm above the solar limb. These measurements are substantially higher than a number of previous estimates and may have considerable implications for our current understanding of the extended solar atmosphere.
The characteristic electron densities, temperatures, and thermal distributions of 1MK active region loops are now fairly well established, but their coronal magnetic field strengths remain undetermined. Here we present measurements from a sample of coronal loops observed by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We use a recently developed diagnostic technique that involves atomic radiation modeling of the contribution of a magnetically induced transition (MIT) to the Fe X 257.262A spectral line intensity. We find coronal magnetic field strengths in the range of 60--150G. We discuss some aspects of these new results in the context of previous measurements using different spectropolarimetric techniques, and their influence on the derived Alfv{e}n speeds and plasma $beta$ in coronal loops.
The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field measurements. Both methods contain free parameters, which have to be optimized for use with data from SDO/HMI. Within this work we describe the corresponding analysis method and evaluate the force-free equilibria by means of how well force-freeness and solenoidal conditions are fulfilled, the angle between magnetic field and electric current and by comparing projections of magnetic field lines with coronal images from SDO/AIA. We also compute the available free magnetic energy and discuss the potential influence of control parameters.
Magnetic reconnection, the rearrangement of magnetic field topology, is a fundamental physical process in magnetized plasma systems all over the universe1,2. Its process is difficult to be directly observed. Coronal structures, such as coronal loops and filament spines, often sketch the magnetic field geometry and its changes in the solar corona3. Here we show a highly suggestive observation of magnetic reconnection between an erupting solar filament and its nearby coronal loops, resulting in changes in connection of the filament. X-type structures form when the erupting filament encounters the loops. The filament becomes straight, and bright current sheets form at the interfaces with the loops. Many plasmoids appear in these current sheets and propagate bi-directionally. The filament disconnects from the current sheets, which gradually disperse and disappear, reconnects to the loops, and becomes redirected to the loop footpoints. This evolution of the filament and the loops suggests successive magnetic reconnection predicted by theories1 but rarely detected with such clarity in observations. Our results on the formation, evolution, and disappearance of current sheets, confirm three-dimensional magnetic reconnection theory and have implications for the evolution of dissipation regions and the release of magnetic energy for reconnection in many magnetized plasma systems.
The magnetic field shapes the structure of the solar corona but we still know little about the interrelationships between the coronal magnetic field configurations and the resulting quasi-stationary structures observed in coronagraphic images (as streamers, plumes, coronal holes). One way to obtain information on the large-scale structure of the coronal magnetic field is to extrapolate it from photospheric data and compare the results with coronagraphic images. Our aim is to verify if this comparison can be a fast method to check systematically the reliability of the many methods available to reconstruct the coronal magnetic field. Coronal fields are usually extrapolated from photospheric measurements typically in a region close to the central meridian on the solar disk and then compared with coronagraphic images at the limbs, acquired at least 7 days before or after to account for solar rotation, implicitly assuming that no significant changes occurred in the corona during that period. In this work, we combine images from three coronagraphs (SOHO/LASCO-C2 and the two STEREO/SECCHI-COR1) observing the Sun from different viewing angles to build Carrington maps covering the entire corona to reduce the effect of temporal evolution to ~ 5 days. We then compare the position of the observed streamers in these Carrington maps with that of the neutral lines obtained from four different magnetic field extrapolations, to evaluate the performances of the latter in the solar corona. Our results show that the location of coronal streamers can provide important indications to discriminate between different magnetic field extrapolations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا