Do you want to publish a course? Click here

Fractional powers of monotone operators in Hilbert spaces

64   0   0.0 ( 0 )
 Added by Daniel Hauer
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

No English abstract

rate research

Read More

In this paper we explore the theory of fractional powers of non-negative (and not necessarily self-adjoint) operators and its amazing relationship with the Chebyshev polynomials of the second kind to obtain results of existence, regularity and behavior asymptotic of solutions for linear abstract evolution equations of $n$-th order in time, where $ngeqslant3$. We also prove generalizations of classical results on structural damping for linear systems of differential equations.
We give stability and consistency results for higher order Grunwald-type formulae used in the approximation of solutions to fractional-in-space partial differential equations. We use a new Carlson-type inequality for periodic Fourier multipliers to gain regularity and stability results. We then generalise the theory to the case where the first derivative operator is replaced by the generator of a bounded group on an arbitrary Banach space.
56 - Peter Hintz 2020
We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter $h$ tends to $0$. An example of such an operator is the shifted semiclassical Laplacian $h^2Delta_g+1$ on a manifold $(X, g)$ of dimension $ngeq 3$ with conic singularities. Our approach is constructive and based on techniques from geometric microlocal analysis: we construct the Schwartz kernels of resolvents and complex powers as conormal distributions on a suitable resolution of the space $[0,1)_htimes Xtimes X$ of $h$-dependent integral kernels; the construction of complex powers relies on a calculus with a second semiclassical parameter. As an application, we characterize the domains of $(h^2Delta_g+1)^{w/2}$ for $mathrm{Re},win(-frac{n}{2},frac{n}{2})$ and use this to prove the propagation of semiclassical regularity through a cone point on a range of weighted semiclassical function spaces.
A notion of resolvent set for an operator acting in a rigged Hilbert space $D subset Hsubset D^times$ is proposed. This set depends on a family of intermediate locally convex spaces living between $D$ and $D^times$, called interspaces. Some properties of the resolvent set and of the corresponding multivalued resolvent function are derived and some examples are discussed.
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant under the translations associated with the elements of $G$. Under some additional technical assumptions, we study the W*-algebra $mathcal{V}$ of translation-invariant bounded linear operators acting on $H$. First, we decompose $mathcal{V}$ into the direct integral of the W*-algebras of bounded operators acting on the reproducing kernel Hilbert spaces $widehat{H}_xi$, $xiinwidehat{G}$, generated by the Fourier transform of the reproducing kernel. Second, we give a constructive criterion for the commutativity of $mathcal{V}$. Third, in the commutative case, we construct a unitary operator that simultaneously diagonalizes all operators belonging to $mathcal{V}$, i.e., converts them into some multiplication operators. Our scheme generalizes many examples previously studied by Nikolai Vasilevski and other authors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا