No Arabic abstract
Slow variations (quenches) of the magnetic field across the paramagnetic-ferromagnetic phase transition of spin systems produce heat. In systems with short-range interactions the heat exhibits universal power-law scaling as a function of the quench rate, known as Kibble-Zurek scaling. In this work we analyze slow quenches of the magnetic field in the Lipkin-Meshkov-Glick (LMG) model, which describes fully connected quantum spins. We analytically determine the quantum contribution to the residual heat as a function of the quench rate $delta$ by means of a Holstein-Primakoff expansion about the mean-field value. Unlike in the case of short-range interactions, scaling laws in the LMG model are only found for a ramp ending at the critical point. If instead the ramp is symmetric, as in the typical Kibble-Zurek scenario, after crossing the critical point the system tends to reabsorb the defects formed during the first part of the ramp: the number of excitations exhibits a crossover behavior as a function of $delta$ and tends to a constant in the thermodynamic limit. Previous, and seemingly contradictory, theoretical studies are identified as specific limits of this dynamics. Our results can be tested on several experimental platforms, including quantum gases and trapped ions.
The presence of non-local and long-range interactions in quantum systems induces several peculiar features in their equilibrium and out-of-equilibrium behavior. In current experimental platforms control parameters such as interaction range, temperature, density and dimension can be changed. The existence of universal scaling regimes, where diverse physical systems and observables display quantitative agreement, generates a common framework, where the efforts of different research communities can be -- in some cases rigorously -- connected. Still, the application of this general framework to particular experimental realisations requires the identification of the regimes where the universality phenomenon is expected to appear. In the present review we summarise the recent investigations of many-body quantum systems with long-range interactions, which are currently realised in Rydberg atom arrays, dipolar systems, trapped ion setups and cold atoms in cavity experiments. Our main aim is to present and identify the common and (mostly) universal features induced by long-range interactions in the behaviour of quantum many-body systems. We will discuss both the case of very strong non-local couplings, i.e. the non-additive regime, and the one in which energy is extensive, but nevertheless low-energy, long wavelength properties are altered with respect to the short-range limit. Cases of competition with other local effects in the above mentioned setups are also reviewed.
We investigate an extension of the quantum Ising model in one spatial dimension including long-range $1 / r^{alpha}$ interactions in its statics and dynamics with possible applications from heteronuclear polar molecules in optical lattices to trapped ions described by two-state spin systems. We introduce the statics of the system via both numerical techniques with finite size and infinite size matrix product states and a theoretical approaches using a truncated Jordan-Wigner transformation for the ferromagnetic and antiferromagnetic case and show that finite size effects have a crucial role shifting the quantum critical point of the external field by fifteen percent between thirty-two and around five-hundred spins. We numerically study the Kibble-Zurek hypothesis in the long-range quantum Ising model with Matrix Product States. A linear quench of the external field through the quantum critical point yields a power-law scaling of the defect density as a function of the total quench time. For example, the increase of the defect density is slower for longer-range models and the critical exponent changes by twenty-five per cent. Our study emphasizes the importance of such long-range interactions in statics and dynamics that could point to similar phenomena in a different setup of dynamical systems or for other models.
We unveil a mechanism for generating oscillations with arbitrary multiplets of the period of a given external drive, in long-range interacting quantum many-particle spin systems. These oscillations break discrete time translation symmetry as in time crystals, but they are understood via two intertwined stroboscopic effects similar to the aliasing resulting from video taping a single fast rotating helicopter blade. The first effect is similar to a single blade appearing as multiple blades due to a frame rate that is in resonance with the frequency of the helicopter blades rotation; the second is akin to the optical appearance of the helicopter blades moving in reverse direction. Analogously to other dynamically stabilized states in interacting quantum many-body systems, this stroboscopic aliasing is robust to detuning and excursions from a chosen set of driving parameters, and it offers a novel route for engineering dynamical $n$-tuplets in long-range quantum simulators, with potential applications to spin squeezing generation and entangled state preparation.
We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising model with power-law ($1/r^{alpha}$) interactions. We find that long-range interactions give rise to a confining potential, which couples pairs of domain walls (kinks) into bound quasiparticles, analogous to mesonic bound states in high-energy physics. We show that these quasiparticles have signatures in the dynamics of order parameters following a global quench and the Fourier spectrum of these order parameters can be expolited as a direct probe of the masses of the confined quasiparticles. We introduce a two-kink model to qualitatively explain the phenomenon of long-range-interaction induced confinement, and to quantitatively predict the masses of the bound quasiparticles. Furthermore, we illustrate that these quasiparticle states can lead to slow thermalization of one-point observables for certain initial states. Our work is readily applicable to current trapped-ion experiments.
In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body physics, out-of-equilibrium extensions of such concepts still leave much to be desired. Using exact diagonalization and the time-dependent variational principle in uniform martrix product states, we calculate the time evolution of the local order parameter and Loschmidt return rate in transverse-field Ising chains with antiferromagnetic power law-decaying interactions, and map out the corresponding rich dynamical phase diagram. textit{Anomalous} cusps in the return rate, which are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions, are absent within the accessible timescales of our simulations. We attribute this to much weaker domain-wall binding in the antiferromagnetic case. For quenches across the quantum critical point, textit{regular} cusps appear in the return rate and connect to the local order parameter changing sign, indicating the concurrence of two major concepts of dynamical phase transitions. Our results consolidate conclusions of previous works that a necessary condition for the appearance of anomalous cusps in the return rate after quenches within the ordered phase is for topologically trivial local spin flips to be the energetically dominant excitations in the spectrum of the quench Hamiltonian. Our findings are readily accessible in modern trapped-ion setups, and we outline the associated experimental considerations.