No Arabic abstract
We perform computational studies of repulsive, frictionless disks to investigate the development of stress anisotropy in mechanically stable (MS) packings. We focus on two protocols for generating MS packings: 1) isotropic compression and 2) applied simple or pure shear strain $gamma$ at fixed packing fraction $phi$. MS packings of frictionless disks occur as geometric families (i.e. parabolic segments with positive curvature) in the $phi$-$gamma$ plane. MS packings from protocol 1 populate parabolic segments with both signs of the slope, $dphi/dgamma >0$ and $dphi/dgamma <0$. In contrast, MS packings from protocol 2 populate segments with $dphi/dgamma <0$ only. For both simple and pure shear, we derive a relationship between the stress anisotropy and dilatancy $dphi/dgamma$ obeyed by MS packings along geometrical families. We show that for MS packings prepared using isotropic compression, the stress anisotropy distribution is Gaussian centered at zero with a standard deviation that decreases with increasing system size. For shear jammed MS packings, the stress anisotropy distribution is a convolution of Weibull distributions that depend on strain, which has a nonzero average and standard deviation in the large-system limit. We also develop a framework to calculate the stress anisotropy distribution for packings generated via protocol 2 in terms of the stress anisotropy distribution for packings generated via protocol 1. These results emphasize that for repulsive frictionless disks, different packing-generation protocols give rise to different MS packing probabilities, which lead to differences in macroscopic properties of MS packings.
At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct numerical construction of disordered jammed states with a volume fraction varying between two limits, $0.636$ and $0.646$. We identify these limits with the random loose packing volume fraction $rl$ and the random close packing volume fraction $rc$ of frictionless spheres, respectively.
We compare the structural and mechanical properties of mechanically stable (MS) packings of frictional disks in two spatial dimensions (2D) generated with isotropic compression and simple shear protocols from discrete element modeling (DEM) simulations. We find that the average contact number and packing fraction at jamming onset are similar (with relative deviations $< 0.5%$) for MS packings generated via compression and shear. In contrast, the average stress anisotropy $langle {hat Sigma}_{xy} rangle = 0$ for MS packings generated via isotropic compression, whereas $langle {hat Sigma}_{xy} rangle >0$ for MS packings generated via simple shear. To investigate the difference in the stress state of MS packings, we develop packing-generation protocols to first unjam the MS packings, remove the frictional contacts, and then rejam them. Using these protocols, we are able to obtain rejammed packings with nearly identical particle positions and stress anisotropy distributions compared to the original jammed packings. However, we find that when we directly compare the original jammed packings and rejammed ones, there are finite stress anisotropy deviations $Delta {hat Sigma}_{xy}$. The deviations are smaller than the stress anisotropy fluctuations obtained by enumerating the force solutions within the null space of the contact networks generated via the DEM simulations. These results emphasize that even though the compression and shear jamming protocols generate packings with the same contact networks, there can be residual differences in the normal and tangential forces at each contact, and thus differences in the stress anisotropy.
The mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure $p$, the ensemble-averaged static shear modulus $langle G-G_0 rangle$ scales with $p^alpha$, where $alpha approx 1$, but above a characteristic pressure $p^{**}$, $langle G-G_0 rangle sim p^beta$, where $beta approx 0.5$. However, we find that the shear modulus $G^i$ for an individual packing typically decreases linearly with $p$ along a geometrical family where the contact network does not change. We resolve this discrepancy by showing that, while the shear modulus does decrease linearly within geometrical families, $langle G rangle$ also depends on a contribution from discontinuous jumps in $langle G rangle$ that occur at the transitions between geometrical families. For $p > p^{**}$, geometrical-family and rearrangement contributions to $langle G rangle$ are of opposite signs and remain comparable for all system sizes. $langle G rangle$ can be described by a scaling function that smoothly transitions between the two power-law exponents $alpha$ and $beta$. We also demonstrate the phenomenon of {it compression unjamming}, where a jammed packing can unjam via isotropic compression.
We present simulation results on the properties of packings of frictionless spherocylindrical particles. Starting from a random distribution of particles in space, a packing is produced by minimizing the potential energy of inter-particle contacts until a force-equilibrated state is reached. For different particle aspect ratios $alpha=10ldots 40$, we calculate contacts $z$, pressure as well as bulk and shear modulus. Most important is the fraction $f_0$ of spherocylinders with contacts at both ends as it governs the jamming threshold $z_c(f_0)=8+2f_0$. These results highlight the important role of the axial sliding degree of freedom of a spherocylinder, which is a zero-energy mode but only if no end-contacts are present.
The mechanical strength and flow of granular materials can depend strongly on the shapes of individual grains. We report quantitative results obtained from photoelasticimetry experiments on locally loaded, quasi-two-dimensional granular packings of either disks or pentagons exhibiting stick-slip dynamics. Packings of pentagons resist the intruder at significantly lower packing fractions than packings of disks, transmitting stresses from the intruder to the boundaries over a smaller spatial extent. Moreover, packings of pentagons feature significantly fewer back-bending force chains than packings of disks. Data obtained on the forward spatial extent of stresses and back-bending force chains collapse when the packing fraction is rescaled according to the packing fraction of steady state open channel formation, though data on intruder forces and dynamics do not collapse. We comment on the influence of system size on these findings and highlight connections with the dynamics of the disks and pentagons during slip events.