Determination of $Lambda_{overline{textrm{MS}}}^{(n_f=2)}$ and analytic parameterization of the static quark-antiquark potential


Abstract in English

While lattice QCD allows for reliable results at small momentum transfers (large quark separations), perturbative QCD is restricted to large momentum transfers (small quark separations). The latter is determined up to a reference momentum scale $Lambda$, which is to be provided from outside, e.g. from experiment or lattice QCD simulations. In this article, we extract $Lambda_{overline{textrm{MS}}}$ for QCD with $n_f=2$ dynamical quark flavors by matching the perturbative static quark-antiquark potential in momentum space to lattice results in the intermediate momentum regime, where both approaches are expected to be applicable. In a second step, we combine the lattice and the perturbative results to provide a complete analytic parameterization of the static quark-antiquark potential in position space up to the string breaking scale. As an exemplary phenomenological application of our all-distances potential we compute the bottomonium spectrum in the static limit.

Download