Do you want to publish a course? Click here

Deep Speech Denoising with Vector Space Projections

132   0   0.0 ( 0 )
 Added by Karl Ni
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose an algorithm to denoise speakers from a single microphone in the presence of non-stationary and dynamic noise. Our approach is inspired by the recent success of neural network models separating speakers from other speakers and singers from instrumental accompaniment. Unlike prior art, we leverage embedding spaces produced with source-contrastive estimation, a technique derived from negative sampling techniques in natural language processing, while simultaneously obtaining a continuous inference mask. Our embedding space directly optimizes for the discrimination of speaker and noise by jointly modeling their characteristics. This space is generalizable in that it is not speaker or noise specific and is capable of denoising speech even if the model has not seen the speaker in the training set. Parameters are trained with dual objectives: one that promotes a selective bandpass filter that eliminates noise at time-frequency positions that exceed signal power, and another that proportionally splits time-frequency content between signal and noise. We compare to state of the art algorithms as well as traditional sparse non-negative matrix factorization solutions. The resulting algorithm avoids severe computational burden by providing a more intuitive and easily optimized approach, while achieving competitive accuracy.



rate research

Read More

We introduce a deep learning model for speech denoising, a long-standing challenge in audio analysis arising in numerous applications. Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time-varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. Experiments on multiple datasets confirm the pivotal role of silent interval detection for speech denoising, and our method outperforms several state-of-the-art denoising methods, including those that accept only audio input (like ours) and those that denoise based on audiovisual input (and hence require more information). We also show that our method enjoys excellent generalization properties, such as denoising spoken languages not seen during training.
Modern deep learning-based models have seen outstanding performance improvement with speech enhancement tasks. The number of parameters of state-of-the-art models, however, is often too large to be deployed on devices for real-world applications. To this end, we propose Tiny Recurrent U-Net (TRU-Net), a lightweight online inference model that matches the performance of current state-of-the-art models. The size of the quantized version of TRU-Net is 362 kilobytes, which is small enough to be deployed on edge devices. In addition, we combine the small-sized model with a new masking method called phase-aware $beta$-sigmoid mask, which enables simultaneous denoising and dereverberation. Results of both objective and subjective evaluations have shown that our model can achieve competitive performance with the current state-of-the-art models on benchmark datasets using fewer parameters by orders of magnitude.
Deep speaker embedding represents the state-of-the-art technique for speaker recognition. A key problem with this approach is that the resulting deep speaker vectors tend to be irregularly distributed. In previous research, we proposed a deep normalization approach based on a new discriminative normalization flow (DNF) model, by which the distributions of individual speakers are arguably transformed to homogeneous Gaussians. This normalization was demonstrated to be effective, but despite this remarkable success, we empirically found that the latent codes produced by the DNF model are generally neither homogeneous nor Gaussian, although the model has assumed so. In this paper, we argue that this problem is largely attributed to the maximum-likelihood (ML) training criterion of the DNF model, which aims to maximize the likelihood of the observations but not necessarily improve the Gaussianality of the latent codes. We therefore propose a new Maximum Gaussianality (MG) training approach that directly maximizes the Gaussianality of the latent codes. Our experiments on two data sets, SITW and CNCeleb, demonstrate that our new MG training approach can deliver much better performance than the previous ML training, and exhibits improved domain generalizability, particularly with regard to cosine scoring.
Recently, speech enhancement (SE) based on deep speech prior has attracted much attention, such as the variational auto-encoder with non-negative matrix factorization (VAE-NMF) architecture. Compared to conventional approaches that represent clean speech by shallow models such as Gaussians with a low-rank covariance, the new approach employs deep generative models to represent the clean speech, which often provides a better prior. Despite the clear advantage in theory, we argue that deep priors must be used with much caution, since the likelihood produced by a deep generative model does not always coincide with the speech quality. We designed a comprehensive study on this issue and demonstrated that based on deep speech priors, a reasonable SE performance can be achieved, but the results might be suboptimal. A careful analysis showed that this problem is deeply rooted in the disharmony between the flexibility of deep generative models and the nature of the maximum-likelihood (ML) training.
Various information factors are blended in speech signals, which forms the primary difficulty for most speech information processing tasks. An intuitive idea is to factorize speech signal into individual information factors (e.g., phonetic content and speaker trait), though it turns out to be highly challenging. This paper presents a speech factorization approach based on a novel factorial discriminative normalization flow model (factorial DNF). Experiments conducted on a two-factor case that involves phonetic content and speaker trait demonstrates that the proposed factorial DNF has powerful capability to factorize speech signals and outperforms several comparative models in terms of information representation and manipulation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا