This paper concerns optimal control problems for a class of sweeping processes governed by discontinuous unbounded differential inclusions that are described via normal cone mappings to controlled moving sets. Largely motivated by applications to hysteresis, we consider a general setting where moving sets are given as inverse images of closed subsets of finite-dimensional spaces under nonlinear differentiable mappings dependent on both state and control variables. Developing the method of discrete approximations and employing generalized differential tools of first-order and second-order variational analysis allow us to derive nondegenerated necessary optimality conditions for such problems in extended Euler-Lagrange and Hamiltonian forms involving the Hamiltonian maximization. The latter conditions of the Pontryagin Maximum Principle type are the first in the literature for optimal control of sweeping processes with control-dependent moving sets.
This paper proposes an algorithmic technique for a class of optimal control problems where it is easy to compute a pointwise minimizer of the Hamiltonian associated with every applied control. The algorithm operates in the space of relaxed controls and projects the final result into the space of ordinary controls. It is based on the descent direction from a given relaxed control towards a pointwise minimizer of the Hamiltonian. This direction comprises a form of gradient projection and for some systems, is argued to have computational advantages over direct gradient directions. The algorithm is shown to be applicable to a class of hybrid optimal control problems. The theoretical results, concerning convergence of the algorithm, are corroborated by simulation examples on switched-mode hybrid systems as well as on a problem of balancing transmission- and motion energy in a mobile robotic system.
We approach the development of models and control strategies of susceptible-infected-susceptible (SIS) epidemic processes from the perspective of marked temporal point processes and stochastic optimal control of stochastic differential equations (SDEs) with jumps. In contrast to previous work, this novel perspective is particularly well-suited to make use of fine-grained data about disease outbreaks and lets us overcome the shortcomings of current control strategies. Our control strategy resorts to treatment intensities to determine who to treat and when to do so to minimize the amount of infected individuals over time. Preliminary experiments with synthetic data show that our control strategy consistently outperforms several alternatives. Looking into the future, we believe our methodology provides a promising step towards the development of practical data-driven control strategies of epidemic processes.
This paper concerns a first-order algorithmic technique for a class of optimal control problems defined on switched-mode hybrid systems. The salient feature of the algorithm is that it avoids the computation of Frechet or G^ateaux derivatives of the cost functional, which can be time consuming, but rather moves in a projected-gradient direction that is easily computable (for a class of problems) and does not require any explicit derivatives. The algorithm is applicable to a class of problems where a pointwise minimizer of the Hamiltonian is computable by a simple formula, and this includes many problems that arise in theory and applications. The natural setting for the algorithm is the space of continuous-time relaxed controls, whose special structure renders the analysis simpler than the setting of ordinary controls. While the space of relaxed controls has theoretical advantages, its elements are abstract entities that may not be amenable to computation. Therefore, a key feature of the algorithm is that it computes adequate approximations to relaxed controls without loosing its theoretical convergence properties. Simulation results, including cpu times, support the theoretical developments.
In this paper we study an optimal control problem with nonsmooth mixed state and control constraints. In most of the existing results, the necessary optimality condition for optimal control problems with mixed state and control constraints are derived under the Mangasarian-Fromovitz condition and under the assumption that the state and control constraint functions are smooth. In this paper we derive necessary optimality conditions for problems with nonsmooth mixed state and control constraints under constraint qualifications based on pseudo-Lipschitz continuity and calmness of certain set-valued maps. The necessary conditions are stratified, in the sense that they are asserted on precisely the domain upon which the hypotheses (and the optimality) are assumed to hold. Moreover necessary optimality conditions with an Euler inclusion taking an explicit multiplier form are derived for certain cases.
This paper introduces and studies the optimal control problem with equilibrium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control equilibrium constraint formulated as a complementarity constraint and it can be seen as a dynamic mathematical program with equilibrium constraints. It provides a powerful modeling paradigm for many practical problems such as bilevel optimal control problems and dynamic principal-agent problems. In this paper, we propose weak, Clarke, Mordukhovich and strong stationarities for the OCPEC. Moreover, we give some sufficient conditions to ensure that the local minimizers of the OCPEC are Fritz John type weakly stationary, Mordukhovich stationary and strongly stationary, respectively. Unlike Pontryagains maximum principle for the classical optimal control problem with equality and inequality constraints, a counter example shows that for general OCPECs, there may exist two sets of multipliers for the complementarity constraints. A condition under which these two sets of multipliers coincide is given.
Nguyen D. Hoang
,Boris S. Mordukhovich
.
(2018)
.
"Extended Euler-Lagrange and Hamiltonian Conditions in Optimal Control of Sweeping Processes with Controlled Moving Sets"
.
Dinh Hoang Nguyen
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا