Do you want to publish a course? Click here

Gaia DR2 in 6D: Searching for the fastest stars in the Galaxy

118   0   0.0 ( 0 )
 Added by Tommaso Marchetti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We search for the fastest stars in the subset of stars with radial velocity measurements of the second data release (DR2) of the European Space Agency mission Gaia. Starting from the observed positions, parallaxes, proper motions, and radial velocities, we construct the distance and total velocity distribution of more than $7$ million stars in our Milky Way, deriving the full 6D phase space information in Galactocentric coordinates. These information are shared in a catalogue, publicly available at http://home.strw.leidenuniv.nl/~marchetti/research.html. To search for unbound stars, we then focus on stars with a probability greater than $50 %$ of being unbound from the Milky Way. This cut results in a clean sample of $125$ sources with reliable astrometric parameters and radial velocities. Of these, $20$ stars have probabilities greater than 80 $%$ of being unbound from the Galaxy. On this latter sub-sample, we perform orbit integration to characterize the stars orbital parameter distributions. As expected given the relatively small sample size of bright stars, we find no hypervelocity star candidates, stars that are moving on orbits consistent with coming from the Galactic Centre. Instead, we find $7$ hyper-runaway star candidates, coming from the Galactic disk. Surprisingly, the remaining $13$ unbound stars cannot be traced back to the Galaxy, including two of the fastest stars (around $700$ km/s). If conformed, these may constitute the tip of the iceberg of a large extragalactic population or the extreme velocity tail of stellar streams.



rate research

Read More

88 - Tommaso Marchetti 2020
The early third data release (EDR3) of the European Space Agency satellite Gaia provides coordinates, parallaxes, and proper motions for ~1.47 billion sources in our Milky Way, based on 34 months of observations. The combination of Gaia DR2 radial velocities with the more precise and accurate astrometry provided by Gaia EDR3 makes the best dataset available to search for the fastest nearby stars in our Galaxy. We compute the velocity distribution of ~7 million stars with precise parallaxes, to investigate the high-velocity tail of the velocity distribution of stars in the Milky Way. We release a catalogue with distances, total velocities, and corresponding uncertainties for all the stars considered in our analysis, available at https://sites.google.com/view/tmarchetti/research . By applying quality cuts on the Gaia astrometry and radial velocities, we identify a clean subset of 94 stars with a probability Pub > 50% to be unbound from our Galaxy. 17 of these have Pub > 80% and are our best candidates. We propagate these stars in the Galactic potential to characterize their orbits. We find that 11 stars are consistent with being ejected from the Galactic disk, and are possible hyper-runaway star candidates. The other 6 stars are not consistent with coming from a known star-forming region. We investigate the effect of adopting a parallax zero point correction, which strongly impacts our results: when applying this correction, we identify only 12 stars with Pub > 50%, 3 of these having Pub > 80%. Spectroscopic follow-ups with ground-based telescopes are needed to confirm the candidates identified in this work.
97 - Douglas Boubert 2018
Hypervelocity stars are intriguing rare objects traveling at speeds large enough to be unbound from the Milky Way. Several mechanisms have been proposed for producing them, including the interaction of the Galaxys super-massive black hole (SMBH) with a binary; rapid mass-loss from a companion to a star in a short-period binary; the tidal disruption of an infalling galaxy and finally ejection from the Large Magellanic Cloud. While previously discovered high-velocity early-type stars are thought to be the result of an interaction with the SMBH, the origin of high-velocity late type stars is ambiguous. The second data release of Gaia (DR2) enables a unique opportunity to resolve this ambiguity and determine whether any late-type candidates are truly unbound from the Milky Way. In this paper, we utilize the new proper motion and velocity information available from DR2 to re-evaluate a collection of historical data compiled on the newly-created Open Fast Stars Catalog. We find that almost all previously-known high-velocity late-type stars are most likely bound to the Milky Way. Only one late-type object (LAMOST J115209.12+120258.0) is unbound from the Galaxy. Performing integrations of orbital histories, we find that this object cannot have been ejected from the Galactic centre and thus may be either debris from the disruption of a satellite galaxy or a disc runaway.
114 - N. Chornay , N. A. Walton 2020
Context: Accurate distance measurements are fundamental to the study of Planetary Nebulae (PNe) but have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims: Accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprecedented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods: We develop and apply an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the Hong Kong/AAO/Strasbourg H$alpha$ (HASH) PN catalogue, taking into account the BP--RP colours of the emph{Gaia} sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources are inferred directly from the data. Results: We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and discuss the prospects for further refinement of the matching based on additional data. We also compare the accuracy of our catalogue to that of previous works.
Context: Lupus is recognised as one of the closest star-forming regions, but the lack of trigonometric parallaxes in the pre-Gaia era hampered many studies on the kinematic properties of this region and led to incomplete censuses of its stellar population. Aims: We use the second data release of the Gaia space mission combined with published ancillary radial velocity data to revise the census of stars and investigate the 6D structure of the Lupus complex. Methods: We performed a new membership analysis of the Lupus association based on astrometric and photometric data over a field of 160 deg2 around the main molecular clouds of the complex and compared the properties of the various subgroups in this region. Results: We identified 137 high-probability members of the Lupus association of young stars, including 47 stars that had never been reported as members before. Many of the historically known stars associated with the Lupus region identified in previous studies are more likely to be field stars or members of the adjacent Scorpius-Centaurus association. Our new sample of members covers the magnitude and mass range from G=8 to G=18 mag and from 0.03 to 2.4Msun, respectively. We compared the kinematic properties of the stars projected towards the molecular clouds Lupus 1 to 6 and showed that these subgroups are located at roughly the same distance (about 160~pc) and move with the same spatial velocity. Our age estimates inferred from stellar models show that the Lupus subgroups are coeval (with median ages ranging from about 1 to 3 Myr). The Lupus association appears to be younger than the population of young stars in the Corona-Australis star-forming region recently investigated by our team using a similar methodology. The initial mass function of the Lupus association inferred from the distribution of spectral types shows little variation compared to other star-forming regions.
In this work we revisit the issue of the rotation speed of the spiral arms and the location of the corotation radius of our Galaxy. This research was performed using homogeneous data set of young open clusters (age < 50 Myr) determined from Gaia DR2 data. The stellar astrometric membership were determined using proper motions and parallaxes, taking into account the full covariance matrix. The distance, age, reddening and metallicity of the clusters were determined by our non subjective multidimensional global optimization tool to fit theoretical isochrones to Gaia DR2 photometric data. The rotation speed of the arms is obtained from the relation between age and angular distance of the birthplace of the clusters to the present-day position of the arms. Using the clusters belonging to the Sagittarius-Carina, Local and Perseus arms, and adopting the Galactic parameters $R_0$ = 8.3 kpc and $V_0$ = 240 km,s$^{-1}$, we determine a pattern speed of $28.2 pm 2.1$ km,s$^{-1}$,kpc$^{-1}$, with no difference between the arms. This implies that the corotation radius is $R_c = 8.51 pm 0.64$ kpc, close to the solar Galactic orbit ($R_c/R_0 = 1.02pm0.07$).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا