Topological metal/semimetals (TMs) have emerged as a new frontier in the field of quantum materials. A few two-dimensional (2D) boron sheets have been suggested as Dirac materials, however, to date TMs made of three-dimensional (3D) boron structures have not been found. Herein, by means of systematic first principles computations, we discovered that a rather stable 3D boron allotrope, namely 3D-alpha boron, is a nodal-chain semimetal. In the momentum space, six nodal lines and rings contact each other and form a novel spindle nodal chain. This 3D-alpha boron can be formed by stacking 2D wiggle alpha boron sheets, which are also nodal-ring semimetals. In addition, our chemical bond analysis revealed that the topological properties of the 3D and 2D boron structures are related to the pi bonds between boron atoms, however, the bonding characteristics are different from those in the 2D and 3D carbon structures.