Do you want to publish a course? Click here

Trudinger-Moser inequalities on a closed Riemannian surface with the action of a finite isometric group

135   0   0.0 ( 0 )
 Added by Yunyan Yang
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $(Sigma,g)$ be a closed Riemannian surface, $W^{1,2}(Sigma,g)$ be the usual Sobolev space, $textbf{G}$ be a finite isometric group acting on $(Sigma,g)$, and $mathscr{H}_textbf{G}$ be a function space including all functions $uin W^{1,2}(Sigma,g)$ with $int_Sigma udv_g=0$ and $u(sigma(x))=u(x)$ for all $sigmain textbf{G}$ and all $xinSigma$. Denote the number of distinct points of the set ${sigma(x): sigmain textbf{G}}$ by $I(x)$ and $ell=inf_{xin Sigma}I(x)$. Let $lambda_1^textbf{G}$ be the first eigenvalue of the Laplace-Beltrami operator on the space $mathscr{H}_textbf{G}$. Using blow-up analysis, we prove that if $alpha<lambda_1^textbf{G}$ and $betaleq 4piell$, then there holds $$sup_{uinmathscr{H}_textbf{G},,int_Sigma| abla_gu|^2dv_g-alpha int_Sigma u^2dv_gleq 1}int_Sigma e^{beta u^2}dv_g<infty;$$ if $alpha<lambda_1^textbf{G}$ and $beta>4piell$, or $alphageq lambda_1^textbf{G}$ and $beta>0$, then the above supremum is infinity; if $alpha<lambda_1^textbf{G}$ and $betaleq 4piell$, then the above supremum can be attained. Moreover, similar inequalities involving higher order eigenvalues are obtained. Our results partially improve original inequalities of J. Moser cite{Moser}, L. Fontana cite{Fontana} and W. Chen cite{Chen-90}.



rate research

Read More

153 - Yunyan Yang , Xiaobao Zhu 2018
Let $(Sigma,g)$ be a closed Riemannian surface, $textbf{G}={sigma_1,cdots,sigma_N}$ be an isometric group acting on it. Denote a positive integer $ell=inf_{xinSigma}I(x)$, where $I(x)$ is the number of all distinct points of the set ${sigma_1(x),cdots,sigma_N(x)}$. A sufficient condition for existence of solutions to the mean field equation $$Delta_g u=8piellleft(frac{he^u}{int_Sigma he^udv_g}-frac{1}{{rm Vol}_g(Sigma)}right)$$ is given. This recovers results of Ding-Jost-Li-Wang (Asian J Math 1997) when $ell=1$ or equivalently $textbf{G}={Id}$, where $Id$ is the identity map.
Let $M$ be a complete, simply connected Riemannian manifold with negative curvature. We obtain some Moser-Trudinger inequalities with sharp constants on $M$.
72 - Yunyan Yang 2017
In this short note, we generalized an energy estimate due to Malchiodi-Martinazzi (J. Eur. Math. Soc. 16 (2014) 893-908) and Mancini-Martinazzi (Calc. Var. (2017) 56:94). As an application, we used it to reprove existence of extremals for Trudinger-Moser inequalities of Adimurthi-Druet type on the unit disc. Such existence problems in general cases had been considered by Yang (Trans. Amer. Math. Soc. 359 (2007) 5761-5776; J. Differential Equations 258 (2015) 3161-3193) and Lu-Yang (Discrete Contin. Dyn. Syst. 25 (2009) 963-979) by using another method.
We study existence of maximizer for the Trudinger-Moser inequality with general nonlinearity of the critical growth on $R^2$, as well as on the disk. We derive a very sharp threshold nonlinearity between the existence and the non-existence in each case, in asymptotic expansions with respect to growth and decay of the function. The expansions are explicit, using Aperys constant. We also obtain an asymptotic expansion for the exponential radial Sobolev inequality on $R^2$.
We establish the Trudinger-Moser inequality on weighted Sobolev spaces in the whole space, and for a class of quasilinear elliptic operators in radial form of the type $displaystyle Lu:=-r^{-theta}(r^{alpha}vert u(r)vert^{beta}u(r))$, where $theta, betageq 0$ and $alpha>0$, are constants satisfying some existence conditions. It worth emphasizing that these operators generalize the $p$- Laplacian and $k$-Hessian operators in the radial case. Our results involve fractional dimensions, a new weighted Polya-Szeg{o} principle, and a boundness value for the optimal constant in a Gagliardo-Nirenberg type inequality.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا