No Arabic abstract
We report on the observation of a collective spin mode in a spinor Bose-Einstein condensate. Initially, all spins point perpendicular to the external magnetic field. The lowest energy mode consists in a sinusoidal oscillation of the local spin around its original axis, with an oscillation amplitude that linearly depends on the spatial coordinates. The frequency of the oscillation is set by the zero-point kinetic energy of the BEC. The observations are in excellent agreement with hydrodynamic equations. The observed spin mode has a universal character, independent of the atomic spin and spin-dependent contact interactions.
We study the richer structures of quasi-one-dimensional Bogoliubov-de Genes collective excitations of F = 1 spinor Bose-Einstein condensate in a harmonic trap potential loaded in an optical lattice. Employing a perturbative method we report general analytical expressions for the confined collective polar and ferromagnetic Goldstone modes. In both cases the excited eigenfrequencies are given as function of the 1D effective coupling constants, trap frequency and optical lattice parameters. It is shown that the main contribution of the optical lattice laser intensity is to shift the confined phonon frequencies. Moreover, for high intensities, the excitation spectrum becomes independent of the self-interaction parameters. We reveal some features of the evolution for the Goldstone modes as well as the condensate densities from the ferromagnetic to the polar phases.
We study the elementary characteristics of turbulence in a quantum ferrofluid through the context of a dipolar Bose gas condensing from a highly non-equilibrium thermal state. Our simulations reveal that the dipolar interactions drive the emergence of polarized turbulence and density corrugations. The superfluid vortex lines and density fluctuations adopt a columnar or stratified configuration, depending on the sign of the dipolar interactions, with the vortices tending to form in the low density regions to minimize kinetic energy. When the interactions are dominantly dipolar, the decay of vortex line length is enhanced, closely following a $t^{-3/2}$ behaviour. This system poses exciting prospects for realizing stratified quantum turbulence and new levels of generating and controlling turbulence using magnetic fields.
Ferrofluids show unusual hydrodynamic effects due to the magnetic nature of their constituents. For increasing magnetization a classical ferrofluid undergoes a Rosensweig instability and creates self-organized ordered surface structures or droplet crystals. A Bose-Einstein condensate with strong dipolar interactions is a quantum ferrofluid that also shows superfluidity. The field of dipolar quantum gases is motivated by the search for new phases that break continuous symmetries. The simultaneous breaking of continuous symmetries like the phase invariance for the superfluid state and the translational symmetry for a crystal provides the basis of novel states of matter. However, interaction-induced crystallization in a superfluid has not been observed. Here we use in situ imaging to directly observe the spontaneous transition from an unstructured superfluid to an ordered arrangement of droplets in an atomic dysprosium Bose-Einstein condensate. By utilizing a Feshbach resonance to control the interparticle interactions, we induce a finite-wavelength instability and observe discrete droplets in a triangular structure, growing with increasing atom number. We find that these states are surprisingly long-lived and measure a hysteretic behaviour, which is typical for a crystallization process and in close analogy to the Rosensweig instability. Our system can show both superfluidity and, as shown here, spontaneous translational symmetry breaking. The presented observations do not probe superfluidity in the structured states, but if the droplets establish a common phase via weak links, this system is a very good candidate for a supersolid ground state.
We investigate the collective excitations of a Raman-induced spin-orbit coupled Bose-Einstein condensate confined in a quasi one-dimension harmonic trap using the Bogoliubov method. By tuning the Raman coupling strength, three phases of the system can be identified. By calculating the transition strength, we are able to classify various excitation modes that are experimentally relevant. We show that the three quantum phases possess distinct features in their collective excitation properties. In particular, the spin dipole and the spin breathing modes can be used to clearly map out the phase boundaries. We confirm these predictions by direct numerical simulations of the quench dynamics that excites the relevant collective modes.
We numerically solve the Boltzmann equation for trapped fermions in the normal phase using the test-particle method. After discussing a couple of tests in order to estimate the reliability of the method, we apply it to the description of collective modes in a spherical harmonic trap. The numerical results are compared with those obtained previously by taking moments of the Boltzmann equation. We find that the general shape of the response function is very similar in both methods, but the relaxation time obtained from the simulation is significantly longer than that predicted by the method of moments. It is shown that the result of the method of moments can be corrected by including fourth-order moments in addition to the usual second-order ones and that this method agrees very well with our numerical simulations.