This article presents results for the last unknown two-loop contributions to the $Z$-boson partial widths and $Z$-peak cross-section. These are the so-called bosonic electroweak two-loop corrections, where bosonic refers to diagrams without closed fermion loops. Together with the corresponding results for the $Z$-pole asymmetries $A_l, A_b$, which have been presented earlier, this completes the theoretical description of $Z$-boson precision observables at full two-loop precision within the Standard Model. The calculation has been achieved through a combination of different methods: (a) numerical integration of Mellin-Barnes representations with contour rotations and contour shifts to improve convergence; (b) sector decomposition with numerical integration over Feynman parameters; (c) dispersion relations for sub-loop insertions. Numerical results are presented in the form of simple parameterization formulae for the total width, $Gamma_{rm Z}$, partial decay widths $Gamma_{e,mu},Gamma_{tau},Gamma_{ u},Gamma_{u},Gamma_{c},Gamma_{d,s},Gamma_{b}$, branching ratios $R_l,R_c,R_b$ and the hadronic peak cross-section, $sigma_{rm had}^0$. Theoretical intrinsic uncertainties from missing higher orders are also discussed.