Do you want to publish a course? Click here

Uncertainties in the Lightest $CP$ Even Higgs Boson Mass Prediction in the Minimal Supersymmetric Standard Model: Fixed Order Versus Effective Field Theory Prediction

58   0   0.0 ( 0 )
 Added by Alexander Voigt
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We quantify and examine the uncertainties in predictions of the lightest $CP$ even Higgs boson pole mass $M_h$ in the Minimal Supersymmetric Standard Model (MSSM), utilising current spectrum generators and including some three-loop corrections. There are two broadly different approximations being used: effective field theory (EFT) where an effective Standard Model (SM) is used below a supersymmetric mass scale, and a fixed order calculation, where the MSSM is matched to QCD$times$QED at the electroweak scale. The uncertainties on the $M_h$ prediction in each approach are broken down into logarithmic and finite pieces. The inferred values of the stop mass parameters are sensitively dependent upon the precision of the prediction for $M_h$. The fixed order calculation appears to be more accurate below a supersymmetry (SUSY) mass scale of $M_S approx 1.2$ TeV, whereas above this scale, the EFT calculation is more accurate. We also revisit the range of the lightest stop mass across fine-tuned parameter space that has an appropriate stable vacuum and is compatible with the lightest $CP$ even Higgs boson $h$ being identified with the one discovered at the ATLAS and CMS experiments in 2012; we achieve a maximum value of $sim 10^{11}$ GeV.



rate research

Read More

113 - S.W. Ham 2001
The phenomenology of the explicit CP violation in the Higgs sector of the next-to-minimal supersymmetric standard model (NMSSM) is investigated, with emphasis on the charged Higgs boson. The radiative corrections due to both quarks and scalar-quarks of the third generation are taken into account, and the negative result of the search for the Higgs bosons at CERN LEP2, with the discovery limit of 0.1 pb, is imposed as a constraint. It is found that there are parameter regions of the NMSSM where the lightest neutral Higgs boson may even be massless, without being detected at LEP2. This implies that the LEP2 data do not contradict the existence of a massless neutral Higgs boson in the NMSSM. For the charged Higgs boson, the radiative corrections to its mass may be negative in some parameter regions of the NMSSM. The phenomenological lower bound on the radiatively corrected mass of the charged Higgs boson is increased as the CP violation becomes maximal, i.e., as the CP violating phase becomes $pi/2$. At the maximal CP violation, its lower bound is about 110 GeV for 5 $leqslant tan beta leqslant$ 40. The vacuum expectation value (VEV) of the neutral Higgs singlet is shown to be no smaller than 16 GeV for any parameter values of the NMSSM with explicit CP violation. This value of the lower limit is found to increase up to about 45 GeV as the ratio ($tan beta$) of the VEVs of the two Higgs doublets decreases to smaller values ($sim$ 2). The discovery limit of the Higgs boson search at LEP2 is found to cover about a half of the kinematically allowed part of the whole parameter space of the NMSSM, and the portion is roughly stable against the CP violating phase.
We study the lightest Higgs boson decays $hrightarrow MZ$ in the framework of the $mu$ from $ u$ supersymmetric standard model ($mu u$SSM), where $M$ is a vector meson $(rho,omega,phi,J/Psi,Upsilon)$. Compared to the minimal supersymmetric standard model (MSSM), the $mu u$SSM introduces three right-handed neutrino superfields, which lead to the mixing of the Higgs doublets with the sneutrinos. The mixing affects the lightest Higgs boson mass and the Higgs couplings. Compared to the standard model, the $mu u$SSM can give large new physics contributions to the decay width of $hrightarrow MZ$ in suitable parameter space, which may be detected by the HL-LHC or the other future high energy colliders.
The signal discovered in the Higgs searches at the LHC can be interpreted as the Higgs boson of the Standard Model as well as the light CP-even Higgs boson of the Minimal Supersymmetric Standard Model (MSSM). In this context the measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role. This precision can be improved substantially below the level of about 50 MeV at the future International Linear Collider (ILC). Within the MSSM the mass of the light CP-even Higgs boson, M_h, can directly be predicted from the other parameters of the model. The accuracy of this prediction should match the one of the experimental measurements. The relatively high experimentally observed value of the mass of about 125.6 GeV has led to many investigations where the supersymmetric (SUSY) partners of the top quark have masses in the multi-TeV range. We review the recent improvements for the prediction for M_h in the MSSM for large scalar top masses. They were obtained by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. However, substantial further improvements will be needed to reach the ILC precision. The newly obtained corrections to M_h are included into the code FeynHiggs.
We consider the possibility that the heavier CP-even Higgs boson~($H^0$) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Collider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, non-universal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson~($h^0$), which is identified with the $126$ GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale.The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.
138 - S. W. Ham , Seong-a Shim , 2009
The Dine-Seiberg-Thomas model (DSTM) is the simplest version of the new physics beyond the minimal supersymmetric standard model (MSSM), in the sense that its Higgs sector has just two dimension-five operators, which are obtained from the power series of the energy scale for the new physics in the effective action analysis. We study the possibility of spontaneous CP violation in the Higgs sector of the DSTM, which consists of two Higgs doublets. We find that the CP violation may be triggered spontaneously by a complex phase, obtained as the relative phase between the vacuum expectation values of the two Higgs doublets. At the tree level, for a reasonably established parameter region, the masses of the three neutral Higgs bosons and their corresponding coupling coefficients to a pair of $Z$ bosons in the DSTM are calculated such that the results are inconsistent with the experimental constraint by the LEP data. Thus, the LEP2 data exclude the possibility of spontaneous CP violation in the DSTM at the tree level. On the other hand, we find that, for a wide area in the parameter region, the CP symmetry may be broken spontaneously in the Higgs sector of the DSTM at the one-loop level, where top quark and scalar top quark loops are taken into account. The upper bound on the radiatively corrected mass of the lightest neutral Higgs boson of the DSTM is about 87 GeV, in the spontaneous CP violation scenario. We confirm that the LEP data does not exclude this numerical result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا