Do you want to publish a course? Click here

Gaia Radial Velocity Spectrometer

123   0   0.0 ( 0 )
 Added by Mark Cropper
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents the specification, design, and development of the Radial Velocity Spectrometer (RVS) on the European Space Agencys Gaia mission. Starting with the rationale for the full six dimensions of phase space in the dynamical modelling of the Galaxy, the scientific goals and derived top-level instrument requirements are discussed, leading to a brief description of the initial concepts for the instrument. The main part of the paper is a description of the flight RVS, considering the optical design, the focal plane, the detection and acquisition chain, and the as-built performance drivers and critical technical areas. After presenting the pre-launch performance predictions, the paper concludes with the post-launch developments and mitigation strategies, together with a summary of the in-flight performance at the end of commissioning.



rate research

Read More

135 - George Seabroke 2016
Gaias Radial Velocity Spectrometer (RVS) has been operating in routine phase for over one year since initial commissioning. RVS continues to work well but the higher than expected levels of straylight reduce the limiting magnitude. The end-of-mission radial-velocity (RV) performance requirement for G2V stars was 15 km/s at V = 16.5 mag. Instead, 15 km/s precision is achieved at 15 < V < 16 mag, consistent with simulations that predict a loss of 1.4 mag. Simulations also suggest that changes to Gaias onboard software could recover ~0.14 mag of this loss. Consequently Gaias onboard software was upgraded in April 2015. The status of this new commissioning period is presented, as well as the latest scientific performance of the on-ground processing of RVS spectra. We illustrate the implications of the RVS limiting magnitude on Gaias view of the Milky Ways halo in 6D using the Gaia Universe Model Snapshot (GUMS).
436 - L. Chemin , C. Soubiran , F. Crifo 2011
The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5x10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard stars designed to calibrate the RVS. Each candidate star has to be observed several times before Gaia launch (and at least once during the mission) to ensure that its radial velocity remains stable during the whole mission. Observations are performed with the high-resolution spectrographs SOPHIE, NARVAL and CORALIE, completed with archival data of the ELODIE and HARPS instruments. The analysis shows that about 7% of the current catalogue exhibits variations larger than the adopted threshold of 300 m/s. Consequently, those stars should be rejected as reference targets, due to the expected accuracy of the Gaia RVS. Emphasis is also put here on our observations of bright asteroids to calibrate the ground-based velocities by a direct comparison with celestial mechanics. It is shown that the radial velocity zero points of SOPHIE, NARVAL and CORALIE are consistent with each other, within the uncertainties. Despite some scatter, their temporal variations remain small with respect to our adopted stability criterion.
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec spectrograph. The MINERVA mission is to discover super-Earths in the habitable zones of nearby stars. This can be accomplished with MINERVAs unique combination of high precision and high cadence over long time periods. In this work, we detail changes to the MINERVA facility that have occurred since our previous paper. We then describe MINERVAs robotic control software, the process by which we perform 1D spectral extraction, and our forward modeling Doppler pipeline. In the process of improving our forward modeling procedure, we found that our spectrographs intrinsic instrumental profile is stable for at least nine months. Because of that, we characterized our instrumental profile with a time-independent, cubic spline function based on the profile in the cross dispersion direction, with which we achieved a radial velocity precision similar to using a conventional sum-of-Gaussians instrumental profile: 1.8 m s$^{-1}$ over 1.5 months on the RV standard star HD 122064. Therefore, we conclude that the instrumental profile need not be perfectly accurate as long as it is stable. In addition, we observed 51 Peg and our results are consistent with the literature, confirming our spectrograph and Doppler pipeline are producing accurate and precise radial velocities.
The Gaia mission is designed as a Galaxy explorer, and will measure simultaneously, in a survey mode, the five or six phase space parameters of all stars brighter than 20th magnitude, as well as providing a description of their astrophysical characteristics. These measurements are obtained by combining an astrometric instrument with micro-arcsecond capabilities, a photometric system giving the magnitudes and colours in 15 bands and a medium resolution spectrograph named the Radial Velocity Spectrometer (RVS). The latter instrument will produce spectra in the 848 to 874 nm wavelength range, with a resolving power R = 11 500, from which radial velocities, rotational velocities, atmospheric parameters and abundances can be derived. A companion paper (Katz et al. 2004) presents the characteristics of the RVS and its performance. This paper details the outstanding scientific impact of this important part of the Gaia satellite on some key open questions in present day astrophysics. The unbiased and simultaneous acquisition of multi-epoch radial velocities and individual abundances of key elements in parallel with the astrometric parameters is essential for the determination of the dynamical state and formation history of our Galaxy. Moreover, for stars brighter than V=15, the resolving power of the RVS will give information about most of the effects which influence the position of a star in the Hertzsprung-Russell diagram, placing unprecedented constraints on the age, internal structure and evolution of stars of all types. Finally, the RVS multi-epoch observations are ideally suited to the identification, classification and characterisation of the many types of double, multiple and variable stars.
The Herschel SPIRE FTS Spectral Feature Finder (FF) detects significant spectral features within SPIRE spectra and employs two routines, and external references, to estimate source radial velocity. The first routine is based on the identification of rotational CO emission, the second cross-correlates detected features with a line template containing most of the characteristic lines in typical far infra-red observations. In this paper, we outline and validate these routines, summarise the results as they pertain to the FF, and comment on how external references were incorporated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا